A Phase Transition Approach to High Temperature Superconductivity -... - Librairie Eyrolles
Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
A Phase Transition Approach to High Temperature Superconductivity
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

A Phase Transition Approach to High Temperature Superconductivity

A Phase Transition Approach to High Temperature Superconductivity

Thomas Schneider, J.M Singer

432 pages, parution le 01/07/2000

Résumé

During the past decade, a great deal of experimental data has been gathered on the superconductivity of cuprates. Although the fundamental mechanisms are still unclear, the authors feel that the overall experimental situation is cleat enough to present a graduate-level textbook from the phase transition point of view. They survey and identify thermal and quantum fluctuation effects, identify material independent universal properties, and provide constraints for the microscopic description of the various phenomena. Brief introductory chapters offer background information on the theory of thermal and quantum critical phenomena. Distributed by World Scientific. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Table of Contents

Preface V
1 Introduction 1
1.1 Cuprate superconductors 1
1.1.1 Structure 2
1.1.2 Doping 3
1.1.3 Effective mass anisotropy and spatial dimensionality 7
1.1.4 Pseudogap 10
1.1.5 Symmetry of the order parameter 13
1.1.6 Importance of critical fluctuations 15
1.2 Universal critical properties of continuous phase transitions 18
1.2.1 Static critical properties at finite temperature 18
1.2.2 Dynamic critical properties at finite temperature 23
1.2.3 Quantum critical properties 25
1.3 Finite size effect and corrections to scaling 32
2 Ginzburg - Landau phenomenology 37
2.1 London phenomenology 37
2.2 Ginzburg - Landau functional 46
2.3 Mean-field treatment 48
2.3.1 Meissner phase 49
2.3.2 Length scales: London penetration depth and correlation length 51
2.3.3 Classification of superconductors 55
2.3.4 Upper critical field 57
2.4 Flux quantization 59
2.5 London model and first flux penetration field 61
2.6 Effective mass anisotropy 64
2.6.1 3D anisotropic London model 67
3 Gaussian thermal fluctuations 73
3.1 Gaussian fluctuations around the mean field solution 73
3.2 Gaussian order parameter fluctuations 74
3.3 Gaussian vector potential fluctuations 79
3.4 Relevance of vector potential fluctuations 80
3.5 Helicity modulus 82
3.6 Effective mass anisotropy 85
3.7 Fluctuation induced diamagnetism 88
3.7.1 Isotropic system 88
3.7.2 Effective mass anisotropy 94
3.7.3 Magnetic torque 96
4 Superfluidity and the n-vector model 99
4.1 Ideal Bose gas 101
4.2 Charged Bose gas subjected to a magnetic field 109
4.3 Weakly interacting Bose gas 111
4.4 Hydrodynamic approach 114
4.5 The n-vector model 118
5 Universality and scaling theory of classical critical phenomena at finite temperature 125
5.1 Static critical phenomena in isotropic systems 125
5.2 Superconductors with effective mass anisotropy 136
5.3 Dimensional analysis 149
5.3.1 Static critical properties 149
5.3.2 Classical dynamic critical phenomena 151
5.4 Implications of the universal critical amplitude relations 153
6 Experimental evidence for classical critical behavior 157
6.1 Critical behavior close to optimum doping 157
6.1.1 Specific heat in zero field 157
6.1.2 Temperature dependence of the penetration depth 169
6.1.3 Corrections to scaling 171
6.1.4 Temperature dependence of the diamagnetic susceptibility 175
6.1.5 Scaling of the magnetization 175
6.1.6 Crossing point phenomenon 177
6.1.7 Magnetic torque and universal scaling function 181
6.1.8 Magnetic field tuned phase transitions: Melting transition 189
6.1.9 Magnetic field tuned phase transitions: Superconductor - normal conductor and insulator transitions 194
6.1.10 Evidence for a Kosterlitz - Thouless - Berezinskii transition in thin films 201
6.1.11 Temperature driven 2D to 3D crossover 206
6.2 Doping dependence of the critical behavior 212
6.3 Evidence for dynamic scaling 219
6.4 Vortex glass to vortex fluid transition 220
6.5 The (H,T) phase diagram of extreme type II superconductors emerging from Monte Carlo simulations 224
7 Quantum Phase Transitions 233
7.1 Scaling theory of quantum critical phenomena 233
7.2 Quantum critical phenomena: conventional superconductors 242
7.3 Quantum critical phenomena: cuprate superconductors 248
7.3.1 Doping and disorder tuned superconductor to insulator transition 248
7.3.2 Film thickness tuned superconductor to insulator transition 256
7.3.3 Doping dependence of the chemical potential 260
7.3.4 Magnetic field tuned transition 261
7.3.5 Nature of the non-superconducting phase 265
7.3.6 Superconductor to normal conductor transition 268
8 Implications 273
8.1 Interlayer tunneling model 273
8.2 Symmetry of the order parameter 276
8.3 Suppression of the transition temperature due to dimensional crossover and quantum fluctuations 277
8.4 Pseudogap features 280
8.5 Relationship between low frequency conductivity and zero temperature penetration depth 284
8.6 Doping and pressure dependences of critical amplitudes 289
8.7 Doping dependence of isotope and pressure coefficients 295
8.8 Bose gas approach 298
8.9 Effective pair mass 299
8.10 Emerging phase diagrams 301
A Mean field treatment 309
A.1 Ising Model 309
A.2 XY Model 315
B XY model 319
B.1 3D-2D Crossover in the XY model 319
B.1.1 2D-XY model 320
B.1.2 3D-XY model 324
B.1.3 Layered XY model 327
B.1.4 Anisotropic XY model 331
B.2 Superconducting networks and films 332
B.2.1 Models 332
B.2.2 Uniform superconducting films 335
C Quantum phase transitions 337
C.1 The harmonic oscillator 337
C.2 Large-n limit of a model for distortive phase transitions 339
C.3 Onset of superfluidity in the ideal Bose gas 343
C.4 Superconductors 344
D BCS theory 351
D.1 Cooper instability 351
D.2 Electron-phonon interaction 354
D.3 Ground state in the BCS approximation 355
D.4 Thermodynamic properties in the BCS - approximation 361
D.5 Simple model 363
E Superconducting properties of the attractive Hubbard model 367
E.1 BCS--BEC crossover 367
E.2 BCS treatment of the attractive Hubbard model 379
E.3 Phase diagram of the attractive Hubbard model on a lattice 388
E.4 2D-XY behavior and KT transition in the attractive Hubbard model 400
References 411
Index 427

Caractéristiques techniques

  PAPIER
Éditeur(s) Imperial College Press
Auteur(s) Thomas Schneider, J.M Singer
Parution 01/07/2000
Nb. de pages 432
Format 16 x 22,4
Couverture Relié
Poids 711g
Intérieur Noir et Blanc
EAN13 9781860942419

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription