Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Theoretical astrophysics - Volume 1
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Theoretical astrophysics - Volume 1

Theoretical astrophysics - Volume 1

Astrophysical Processes

Thanu Padmanabhan

600 pages, parution le 01/10/2000

Résumé

Graduate students and researchers in astrophysics and cosmology need a solid understanding of a wide range of physical processes. This clear and authoritative textbook has been designed to help them to develop the necessary toolkit of theory. Assuming only an undergraduate background in physics and no detailed knowledge of astronomy, this book guides the reader step by step through a comprehensive collection of fundamental theoretical topics. The book is modular in design, allowing the reader to pick and chose a selection of chapters, if necessary. It can be used alone, or in conjunction with the forthcoming accompanying two volumes (covering stars and stellar systems, and galaxies and cosmology, respectively). After reviewing the basics of dynamics, electromagnetic theory, and statistical physics, the book carefully develops a solid understanding of all the key concepts such as radiative processes, spectra, fluid mechanics, plasma physics and MHD, dynamics of gravitating systems, general relativity, and nuclear physics. Each topic is developed methodically from undergraduate basic physics. Throughout, the reader's understanding is developed and tested with carefully structured problems and helpful hints. This welcome volume provides graduate students with an indispensable introduction to and reference on all the physical processes they will need to successfully tackle cutting-edge research in astrophysics and cosmology.

L'avis du libraire Eyrolles

Aux étudiants en astrophysique, à tous les chercheurs passionnés de cosmologie voici une somme regroupant toutes les sciences liées à la science de l'univers. Deux volumes de référence.

Sommaire

  • Preface
  • Chapter 1 - Order-of-Magnitude Astrophysics
    • 1.1 Introduction
    • 1.2 Energy Scales of Physical Phenomena
    • 1.3 Classical Radiative Processes
    • 1.4 Radiative Processes in Quantum Theory
    • 1.5 Varieties of Astrophysical Structures
    • 1.6 Detecting the Photons
  • Chapter 2 Dynamics
    • 2.1 Introduction<
    • 2.2 Time Evolution of Dynamical Systems
    • 2.3 Examples of Dynamical Systems
    • 2.4 Canonical Transformations
    • 2.5 Integrable Systems
    • 2.6 Adiabatic Invariance
    • 2.7 Perturbation Theory for Nonintegrable Systems
    • 2.8 Surface of Section
  • Chapter 3 Special Relativity, Electrodynamics, and Optics<
    • 3.1 Introduction
    • 3.2 The Principles of Special Relativity
    • 3.3 Transformation of Coordinates and Velocities
    • 3.4 Four Vectors
    • 3.5 Particle Dynamics
    • 3.6 Distribution Functions and Moments
    • 3.7 External Fields of Force
    • 3.8 Motion of Charged Particles in External Fields
    • 3.9 Maxwell's Equations
    • 3.10 Energy and Momentum of the Electromagnetic Field
    • 3.11 Time-Independent Electromagnetic Fields
    • 3.12 Electromagnetic Waves
    • 3.13 Diffraction
    • 3.14 Interference and Coherence
    • 3.15 Linear Optical Systems
    • 3.16 Wave Propagation through a Random Medium
  • Chapter 4 Basics of Electromagnetic Radiation
    • 4.1 Introduction
    • 4.2 Radiation from an Accelerated Charge
    • 4.3 General Properties of the Radiation Field
    • 4.4 Radiation Reaction
    • 4.5 Quantum Theory of Radiation
  • Chapter 5 Statistical Mechanics
    • 5.1 Introduction
    • 5.2 Operational Basis of Statistical Mechanics
    • 5.3 The Density of States and Microcanonical Distribution
    • 5.4 Mean Values in Canonical Distribution
    • 5.5 Derivation of Classical Thermodynamics
    • 5.6 Description of Macroscopic Thermodynamics
    • 5.7 Quantum Statistical Mechanics
    • 5.8 Partition Function for Bosons and Fermions
    • 5.9 Fermions
    • 5.10 Bosons
    • 5.11 Statistical Mechanics of the Electromagnetic Field
    • 5.12 Ionisation and Pair-Creation Equilibria
    • 5.13 Time Evolution of Distribution Functions
    • 5.14 Evolution under Scattering
  • Chapter 6 Radiative Processes
    • 6.1 Introduction
    • 6.2 Macroscopic Quantities for Radiation
    • 6.3 Absorption and Emission in the Continuum Case
    • 6.4 Scattering of Electromagnetic Radiation
    • 6.5 Radiation Drag on a Charged Particle<
    • 6.6 Compton Scattering and Comptonisation
    • 6.7 Kompaneets Equation
    • 6.8 Equations of Radiative Transport
    • 6.9 Bremsstrahlung
    • 6.10 Synchrotron Radiation: Basics
    • 6.11 Synchrotron Radiation: Rigorous Results
    • 6.12 Photoionisation
    • 6.13 Collisional Ionisation
  • Chapter 7 Spectra
    • 7.1 Introduction
    • 7.2 Width of Spectral Lines
    • 7.3 Curve of Growth
    • 7.4 Atomic-Energy Levels
    • 7.5 Selection Rules
    • 7.6 Energy Levels of Diatomic Molecules
    • 7.7 Aspects of Diatomic Spectra
  • Chapter 8 Neutral Fluids
    • 8.1 Introduction
    • 8.2 Molecular Collisions and Evolution of the Distribution Function
    • 8.3 Stress Tensor for an Ideal Fluid
    • 8.4 Stress Tensor for a Viscous Fluid
    • 8.5 Equations of Motion for the ViscousFluid
    • 8.6 Flow of Ideal Fluids
    • 8.7 Flow of Viscous Fluids
    • 8.8 Sound Waves
    • 8.9 Supersonic Flows
    • 8.10 Steepening of Sound Waves
    • 8.11 Shock Waves
    • 8.12 Sedov Solution for Strong Explosions
    • 8.13 Fluid Instabilities
    • 8.14 Conduction and Convection
    • 8.15 Turbulence
  • Chapter 9 Plasma Physics
    • 9.1 Introduction
    • 9.2 The Mean Field and Collisions in Plasma
    • 9.3 Collisions in Plasmas
    • 9.4 Collisionless Plasmas
    • 9.5 Waves in Magnetised Cold Plasmas<
    • 9.6 Magnetohydrodynamics
    • 9.7 Hydromagnetic Waves
  • Chapter 10
    • 10.1 Introduction
    • 10.2 Gravitational Interaction in Astrophysical Systems
    • 10.3 Self-Gravitating Barotropic Fluids
    • 10.4 Collisionless Gravitating Systems in Steady State
    • 10.5 Moment Equations for Collisionless Systems
    • 10.6 Approach of a Collisionless System to Steady State
    • 10.7 Collisional Evolution
    • 10.8 Dynamical Evolution of Gravitating Systems
  • Chapter 11 General Theory of Relativity
    • 11.1 Introduction
    • 11.2 Inescapable Connection between Gravity and Geometry
    • 11.3 Metric Tensor and Gravity
    • 11.4 Particle Trajectories in a Gravitational Field
    • 11.5 Physics in Curved Space-Time
    • 11.6 Curvature
    • 11.7 Dynamics of Gravitational Field
    • 11.8 Schwarzschild Metric
    • 11.9 Orbits in the Schwarzschild Metric
    • 11.10 Gravitational Collapse and Black Holes
    • 11.11 The Energy-Momentum Pseudotensor for Gravity
    • 11.12 Gravitational Waves
  • Chapter 12 Basics of Nuclear Physics
    • 12.1 Introduction
    • 12.2 Nuclear Structure
    • 12.3 Thermonuclear Reactions<
    • 12.4 Specific Thermonuclear Reactions
  • Notes and References
  • Index
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Cambridge University Press
Auteur(s) Thanu Padmanabhan
Parution 01/10/2000
Nb. de pages 600
Format 17 x 24
Couverture Broché
Poids 950g
Intérieur Noir et Blanc
EAN13 9780521566322
ISBN13 978-0-521-56632-2

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription