PI: A Source Book - Jonathan M. Borwein , Peter B. Borwein - 2ème... - Librairie Eyrolles

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
PI: A Source Book
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

PI: A Source Book

PI: A Source Book

Jonathan M. Borwein, Peter B. Borwein

760 pages, parution le 01/08/1997 (2eme édition)

Résumé

The aim of this book is to provide a complete history of pi from the dawn of mathematical time to the present. The story of pi reflects the most seminal, the most serious and sometimes the silliest aspects of mathematics, and a suprising amount of the most important mathematics and mathematicians have contributed to its unfolding. Pi is one of the few concepts in mathematics whose mention evokes a response of recognition and interest in those not concerned professionally with the subject. Yet, despite this, no source book on pi has been published. One of the beauties of the literature on pi is that it allows for the inclusion of very modern, yet still accessible, mathematics. Mathematicians and historians of mathematics will find this book indispensable. Teachers at every level from the seventh grade onward will find here ample resources for anything from special topic courses to individual talks and special student projects. The literature on pi included in this source book falls into three classes: first a selection of the mathematical literature of four millennia, second a variety of historial studies or writings on the cultural meaning and significance of the number, and third, a number of treatments on pi that are fanciful, satirical and/or whimsical.

Contents
Preface
Acknowledgments
Introduction
1 The Rhind Mathematical Papyrus-;Problem 50 (~1650 B.C.)
2 Engels. Quadrature of the Circle in Ancient Egypt (1977)
3 Archimedes. Measurement of a Circle (~250 BC)
4 Phillips. Archimedes the Numerical Analyst (1981)
5 Lam and Ang. Circle Measurements in Ancient China (1986)
6 The Banu Musa: The Measurement of Plane and Solid Figures (~850)
7 Madhava. The Power Series for Arctan and Pi (~1400)
8 Hope-;Jones. Ludolph (or Ludolff or Lucius) van Ceulen (1938)
9 Viète. Variorum de Rebus Mathematicis Reponsorum Liber VII (1593)
10 Wallis. Computation of ? by Successive Interpolations (1655)
11 Wallis. Arithmetica Infinitorum (1655)
12 Huygens. De Circuli Magnitudine Inventa (1724)
13 Gregory. Correspondence with John Collins (1671)
14 Roy. The Discovery of the Series Formula for; by Leibniz, Gregory, and Nilakantha (1990)
15 Jones. The First Use of ? for the Circle Ratio (1706)
16 Newton. Of the Method of Fluxions and Infinite Series (1737)
17 Euler. Chapter 10 of Introduction to Analysis of the Infinite (On the Use of the Discovered Fractions to Sum Infinite Series) (1748)
18 Lambert. Mèmoire Sur Quelques Propriètès Remarquables Des Quantitès Transcendentes Circulaires et Legarithmiques (1761)
19 Lambert. Irrationality of ? (1969)
20 Shanks. Contributions to Mathematics Comprising Chiefly of the Rectification of the Circle to 607 Places of Decimals (1853)
21 Hermite. Sur La Foncion Exponentielle (1873)
22 Lindemann. Ueber die Zahl ? (1882)
23 Weierstrass. Zu Lindemann's Abhandlung "Über die Ludolphsche Zahl" (1885)
24 Hilbert. Ueber dieTrancendenz der Zahlen e und ? (1893)
25 Goodwin. Quadrature of the Circle (1894)
26 Edington. House Bill No. 246, Indiana State Legislature, 1897 (1935)
27 Singmaster. The Legal Values of Pi (1985)
28 Ramanujan. Squaring the Circle (1913)
29 Ramanujan. Modular Equations and Approximations to ? (1914)
30 Watson. The Marquis and the Land Agent: A Tale of the Eighteenth Century (1933)
31 Ballantine. The Best (?) Formula for Computing ? to a Thousand Places (1939)
32 Birch. An Algorithm for Construction of Arctangent Relations (1946)
33 Niven. A Simple Proof that ? Is Irrational (1947)
34 Reitwiesner. An ENIAC Determination of ? and e to 2000 Decimal Places (1950)
35 Schepler. The Chronology of Pi (1950)
36 Mahler. On the Approximation of ? (1953)
37 Wrench, Jr. The Evolution of Extended Decimal Approximations to ? (1960)
38 Shanks and Wrench, Jr. Calculation of ? to 100,000 Decimals (1962)
39 Sweeny. On the Computation of Euler's Constant (1963)
40 Baker. Approximations to the Logarithms of Certain Rational Numbers (1964)
41 Adams. Asymptotic Diophantine Approximations to E (1966)
42 Mahler. Applications of Some Formulae by Hermite to the Approximations of Exponentials of Logarithms (1967)
43 Eves. In Mathematical Circles; A Selection of Mathematical Stories and Anecdotes (excerpt) (1969)(
44 Eves. Mathematical Circles Revisited; A Second Collection of Mathematical Stories and Anecdotes (excerpt) (1971)
45 Todd. The Lemniscate Constants (1975)
46 Salamin. Computation of ? Using Arithmetic-;Geometric Mean (1976)
47 Brent. Fast Multiple-;Precision Evaluation of Elementary Functions (1976)
48 Beukers. A Note on the Irrationality of &zgr;(2) and &zgr;(3) (1979)
49 van der Poorten. A Proof that Euler Missed...Apèry's Proof of the Irrationality of &zgr;(3) 1979)
50 Brent and McMillan. Some New Algorithms for High-;Precision Computation of Euler's Constant (1980)
51 Apostol. A Proof that Euler Missed: Evaluating &zgr;(2) the Easy Way (1983)
52 O'Shaughnessy. Putting God Back in Math (1983)
53 Stern. A Remarkable Approximation to ? (1985)
54 Newman and Shanks. On a Sequence Arising in Series for ? (1984)
55 Cox. The Arithmetic-;Geometric Mean of Gauss (1984)
56 Borwein and Borwein. The Arithmetic-;Geometric Mean and Fast Computation of Elementary Functions (1984)
57 Newman. A Simplified Version of the Fast Algorithms of Brent and Salamin (1984)
58 Wagon. Is Pi Normal? (1985)
59 Keith. Circle Digits: A Self-;Referential Story (1986)
60 Bailey. The Computation of ? to 29,360,000 Decimal Digits Using Borweins' Quartically Convergent Algorithm (1988)
61 Kanada. Vectorization of Multiple-;Precision Arithmetic Program and 201,326,000 Decimal Digits of ? Calculation (1988)
62 Borwein and Borwein. Ramanujan and Pi (1988)
63 Chudnovsky and Chudnovsky. Approximations and Complex Multiplication According to Ramanujan (1988)
64 Borwein, Borwein and Bailey. Ramanujan, Modular Equations, and Approximations to Pi or How to Compute One Billion Digits of Pi (1989)
65 Borwein, Borwein and Dilcher. Pi, Euler Numbers, and Asymptotic Expansions (1989)
66 Beukers, Bèzivin, and Robba. An Alternative Proof of the Lindemann-;Weierstrass Theorem (1990)
67 Webster. The Tail of Pi (1991)
68 Eco. An excerpt from Foucault's Pendulum (1993)
69 Keith. Pi Mnemonics and the Art of Constrained Writing (1996)
70 Bailey, Borwein, and Plouffe. On the Rapid Computation of Various Polylogarithmic Constants (1996)
Appendix I-On the Early History of Pi
Appendix II-A Computational Chronology of Pi
Appendix III-Selected Formulae for Pi
Bibliography
Credits
Index

L'auteur - Peter B. Borwein

Peter Borwein is Professor of Mathematics at Simon Fraser University and the Associate Director of the Centre for Experimental and Constructive Mathematics. He is also the recipient of the Mathematical Association of America Chauvenet Prize and the Merten M. Hasse Prize for expository writing in mathematics.

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Jonathan M. Borwein, Peter B. Borwein
Parution 01/08/1997
Édition  2eme édition
Nb. de pages 760
Couverture Relié
Poids 1540g
Intérieur Noir et Blanc
EAN13 9780387989464
ISBN13 978-0-387-98946-4

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription