Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Model Reduction of Complex Dynamical Systems
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Model Reduction of Complex Dynamical Systems

Model Reduction of Complex Dynamical Systems

Peter / Breiten Benner - Collection Yellow Sale 2023

415 pages, parution le 25/08/2021

Résumé

This contributed volume presents some of the latest research related to model order reduction of complex dynamical systems with a focus on time-dependent problems.This contributed volume presents some of the latest research related to model order reduction of complex dynamical systems with a focus on time-dependent problems. Chapters are written by leading researchers and users of model order reduction techniques and are based on presentations given at the 2019 edition of the workshop series Model Reduction of Complex Dynamical Systems - MODRED, held at the University of Graz in Austria. The topics considered can be divided into five categories:
  • system-theoretic methods, such as balanced truncation, Hankel norm approximation, and reduced-basis methods;
  • data-driven methods, including Loewner matrix and pencil-based approaches, dynamic mode decomposition, and kernel-based methods;
  • surrogate modeling for design and optimization, with special emphasis on control and data assimilation;
  • model reduction methods in applications, such as control and network systems, computational electromagnetics, structural mechanics, and fluid dynamics; and
  • model order reduction software packages and benchmarks.

This volume will be an ideal resource for graduate students and researchers in all areas of model reduction, as well as those working in applied mathematics and theoretical informatics.
D. S. Karachlios, I. V. Gosea, A. C. Antoulas, On Bilinear Time Domain Identification and Reduction in the Loewner Framework.- Nguyen Thanh Son, Pierre-Yves Gousenbourger, Estelle Massart, Tatjana Stykel, Balanced Truncation for Parametric Linear Systems using Interpolation of Gramians: A Comparison of Algebraic and Geometric Approaches.- Ion Victor Gosea, Igor Pontes Duff, Toward Fitting Structured Nonlinear Systems by Means of Dynamic Mode Decomposition.- Peter Benner, Sara Grundel, Petar Mlinaric, Clustering-Based Model Order Reduction for Nonlinear Network Systems.- Sridhar Chellappa, Lihong Feng, Valentin de la Rubia, Peter Benner, Adaptive Interpolatory MOR by Learning the Error Estimator in the Parameter Domain.- C. Bertram, H. Fassbender, A Link Between Gramian Based Model Order Reduction and Moment Matching.- Christian Himpe, Comparing (Empirical-Gramian-Based) Model Order Reduction Algorithms.- Rupert Ullmann, Stefan Sicklinger, Gerhard Muller, Optimiztion-Based Parametric Model Order Reduction for the Application to the Frequency Domain Analysis of Complex Systems.- Sajad Naderi Lordejani, Bart Besselink, Antoine Chaillet, Nathan van de Wouw, On Extended Model Order Reduction for Linear Time Delay Systems.-Artur Jungiewicz, Christoph Ludwig, Shuwen Sun, Utz Wever, Roland Wuchner, A Practical Method for the Reduction of Linear Thermo-mechanical Dynamic Equations.- Saifon Chaturantabut, Thomas Freeze, Elias Salomao Helou, Nicole Henning-Schroeder, Charles H. Lee, Reduced Order Methods in Medical Imaging.- Harikrishnan K. Sreekumar, Rupert Ullmann, Stefan Sicklinger, Sabine C. Langer, Efficient Krylov Subspace Techniques for Model Order Reduction of Automotive Structures for Vibroacoustic Applications.- Gaetano Pascarella, Marco Fossati, Model-Based Adaptive MOR Framework for Unsteady Flows around Lifting Bodies.- Michael Hinze, Denis Korolev, Reduced Basis Methods for Quasilinear Elliptic PDEs with Applications to Permanent Magnet Synchronous Motors.- Suleyman Yildiz, Murat Unzuca, Bulent Karasoezen, Structure-Preserving Reduced Order Modeling of Non-Traditional Shallow Water Equation.- Stephan Rave, Jens Saak, A Non-Stationary Thermal-Block Benchmark Model for Parametric Model Order Reduction.- Petar Mlinaric, Stephan Rave, Jens Saak, Parametric Model Order Reduction Using pyMOR.- Peter Benner, Martin Koehler, Jens Saak, Matrix Equations, Sparse Solvers: M.E.S.S.-2.0.1 - Philosophy, Features and Application for (Parametric) Model Order Reduction.- Peter Benner, Steffen W. R. Werner, MORLAB - The Model Order Reduction LABoratory.

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Peter / Breiten Benner
Collection Yellow Sale 2023
Parution 25/08/2021
Nb. de pages 415
EAN13 9783030729820

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription