Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Advances in Financial Machine Learning
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Advances in Financial Machine Learning

Advances in Financial Machine Learning

Marcos lopez de prado (author)

400 pages, parution le 06/03/2018

Résumé

DR. MARCOS LÓPEZ DE PRADO manages several multibillion-dollar funds for institutional investors using ML algorithms. Marcos is also a research fellow at Lawrence Berkeley National Laboratory (U.S. Department of Energy, Office of Science). One of the top-10 most read authors in finance (SSRN's rankings), he has published dozens of scientific articles on ML in the leading academic journals, and he holds multiple international patent applications on algorithmic trading. Marcos earned a PhD in Financial Economics (2003), a second PhD in Mathematical Finance (2011) from Universidad Complutense de Madrid, and is a recipient of Spain's National Award for Academic Excellence (1999). He completed his post-doctoral research at Harvard University and Cornell University, where he teaches a Financial ML course at the School of Engineering. Marcos has an Erdös #2 and an Einstein #4 according to the American Mathematical Society.

About the Author

Preamble

1. Financial Machine Learning as a Distinct Subject

Part 1: Data Analysis

2. Financial Data Structures

3. Labeling

4. Sample Weights

5. Fractionally Differentiated Features

Part 2: Modelling

6. Ensemble Methods

7. Cross-validation in Finance

8. Feature Importance

9. Hyper-parameter Tuning with Cross-Validation

Part 3: Backtesting

10. Bet Sizing

11. The Dangers of Backtesting

12. Backtesting through Cross-Validation

13. Backtesting on Synthetic Data

14. Backtest Statistics

15. Understanding Strategy Risk

16. Machine Learning Asset Allocation

Part 4: Useful Financial Features

17. Structural Breaks

18. Entropy Features

19. Microstructural Features

Part 5: High-Performance Computing Recipes

20. Multiprocessing and Vectorization

21. Brute Force and Quantum Computers

22. High-Performance Computational Intelligence and Forecasting Technologies

Dr. Kesheng Wu and Dr. Horst Simon

Index

Machine learning (ML) is changing virtually every aspect of our lives. Today ML algorithms accomplish tasks that until recently only expert humans could perform. As it relates to finance, this is the most exciting time to adopt a disruptive technology that will transform how everyone invests for generations. Readers will learn how to structure Big data in a way that is amenable to ML algorithms; how to conduct research with ML algorithms on that data; how to use supercomputing methods; how to backtest your discoveries while avoiding false positives. The book addresses real-life problems faced by practitioners on a daily basis, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their particular setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.

1st editionHG104Finance - Data processing.|Information theory in finance.|Machine learning.1New JerseyHoboken, New JerseyMarcos Lopez de Prado.

Caractéristiques techniques

  PAPIER
Éditeur(s) Wiley
Auteur(s) Marcos lopez de prado (author)
Parution 06/03/2018
Nb. de pages 400
Poids 666g
EAN13 9781119482086

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription