Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Applied Machine Learning for Data Scientists and Software Engineers
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Applied Machine Learning for Data Scientists and Software Engineers

Applied Machine Learning for Data Scientists and Software Engineers

Andrew kelleher (author)|adam kelleher (author)

280 pages, parution le 15/12/2017

Résumé

Part I: Principles of Framing
1. Introduction: How We See Data Science
2. Translate an Ask into a Well-Formed problem
3. Framing/Re-framing

 

Part II: Principles of Choosing a Model
4. Finding Causal Relationships
5. Quantifying Quality and Confidence
6. Quantifying Error
7. Noise

 

Part III: Case Studies
8. The Initial Ask: Knowing When to Reframe
9. Building Domain Knowledge
10. Causal Modeling
11. Assessment of the Data Set
12. System Modeling
13. Refinement

 

Part IV: Appendices
A. Brief Overview of Common Algorithms
B. History/Progression of Search Algorithms
C. History/Progression of Metrics for User Engagement
D. Useful Papers and Further Reading

The typical data science task in industry starts with an “ask” from the business. But few data scientists have been taught what to do with that ask. This book shows them how to assess it in the context of the business’s goals, reframe it to work optimally for both the data scientist and the employer, and then execute on it. Written by two of the experts who’ve achieved breakthrough optimizations at BuzzFeed, it’s packed with real-world examples that take you from start to finish: from ask to actionable insight.

 

Andrew Kelleher and Adam Kelleher walk you through well-formed, concrete principles for approaching common data science problems, giving you an easy-to-use checklist for effective execution. Using their principles and techniques, you’ll gain deeper understanding of your data, learn how to analyze noise and confounding variables so they don’t compromise your analysis, and save weeks of iterative improvement by planning your projects more effectively upfront.

 

Once you’ve mastered their principles, you’ll put them to work in two realistic, beginning-to-end site optimization tasks. These extended examples come complete with reusable code examples and recommended open-source solutions designed for easy adaptation to your everyday challenges. They will be especially valuable for anyone seeking their first data science job -- and everyone who’s found that job and wants to succeed in it.

Q325.5Machine learning.1EnglandHarlowAndrew Kelleher, Adam Kelleher.

Caractéristiques techniques

  PAPIER
Éditeur(s) Addison-wesley
Auteur(s) Andrew kelleher (author)|adam kelleher (author)
Parution 15/12/2017
Nb. de pages 280
Format 178 x 232
Poids 511g
EAN13 9780134116549

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription