Résumé
Contents
1. Introduction to Knowledge-base Intelligent
Systems.
The history of artificial intelligence, or from the "Dark Ages" to knowledge-based systems.
Summary.
2. Rule-Based Expert Systems.
Rules as a knowledge representation technique.
The main players in the expert system development team.
Structure of a rule-based expert system.
Fundamental characteristics of an expert system.
Forward chaining and backward chaining inference techniques.
THERMOSTAT: a demonstration of a rule-based expert system.
Conflict resolution.
Advantages and disadvantages of rule-based expert systems.
Summary.
3. Uncertainty Management in Rule-Based Expert Systems.
Basic probability theory.
Bayesian reasoning.
FORECAST: Bayesian accumulation of evidence.
Bias of the Bayesian method.
Certainty factors theory and evidential reasoning.
FORECAST: an application of certainty factors.
Comparison of Bayesian reasoning and certainty factors.
Summary.
4. Fuzzy Expert Systems.
Fuzzy sets.
Linguistic variables and hedges.
Operations of fuzzy sets.
Fuzzy rules.
Fuzzy inference.
Building a fuzzy expert system.
Summary.
5. Frame-Based ExpertSystems.
Frames as a knowledge representation technique.
Inheritance in frame-based systems.
Methods and demons.
Interaction of frames and rules.
Buy Smart: a frame-based expert system.
Summary.
6. Artificial Neural Networks.
The neuron as a simple computing element.
The perceptron.
Multilayer neural networks.
Accelerated learning in multilayer neural networks.
The Hopfield network.
Bidirectional associative memory.
Self-organising neural networks.
Summary.
7. Evolutionary Computation.
Simulation of natural evolution.
Genetic algorithms.
Why genetic algorithms work.
Case study: maintenance and scheduling with genetic algorithms.
Evolution strategies.
Genetic programming.
Summary.
8. Hybrid Intelligent Systems.
Neural expert systems.
Neuro-fuzzy systems.
ANFIS: Adaptive Neuro-Fuzzy Inference System.
Evolutionary neural networks.
Fuzzy evolutionary systems.
Summary.
9. Knowledge Engineering and Data Mining.
Will an expert system work for my problem?
Will a fuzzy expert system work for my problem?
Will a neural network work for my problem?
Data mining and knowledge discovery.
Summary.
Glossary.
Appendix.
Index.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Addison Wesley |
Auteur(s) | Michael Negnevitsky |
Parution | 01/09/2001 |
Nb. de pages | 394 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 746g |
Intérieur | Noir et Blanc |
EAN13 | 9780201711592 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse