
Data Complexity in Pattern Recognition
Mitra Basu, Tin Kam Ho - Collection Advanced Information and Knowledge Processing
Résumé
Machines capable of automatic pattern recognition have many fascinating uses in science and engineering as well as in our daily lives. Algorithms for supervised classification, where one infers a decision boundary from a set of training examples, are at the core of this capability. Tremendous progress has been made in refining such algorithms; yet, automatic learning in many simple tasks in daily life still appears to be far from reach.
This book takes a close view of data complexity and its role in shaping the theories and techniques in different disciplines and asks:
- What is missing from current classification techniques?
- When the automatic classifiers are not perfect, is it a deficiency of the algorithms by design, or is it a difficulty intrinsic to the classification task?
- How do we know whether we have exploited to the fullest extent the knowledge embedded in the training data?
Data Complexity in Pattern Recognition is unique in its comprehensive coverage and multidisciplinary approach from various methodological and practical perspectives. Researchers and practitioners alike will find this book an insightful reference to learn about the current status of available techniques as well as application areas.
Written for: Researchers, postgraduates, practitioners
Sommaire
- Theory and Methodology
- Measures of Geometrical Complexity in Classification Problems
- Object Representation, Sample Size and Dataset Complexity
- Measures of Data and Classifier Complexity and the Training Sample Size
- Linear Separability in Descent Procedures for Linear Classifiers
- Data Complexity, Margin-based Learning and Popper's Philosophy of Inductive Learning
- Data Complexity and Evolutionary Learning
- Data Complexity and Domains of Competence of Classifiers
- Data Complexity Issues in Grammatical Inference
- Applications
- Simple Statistics for Complex Feature Spaces
- Polynomial Time for Complexity Graph Distance Computation for Web Content Mining
- Data Complexity in Clustering Analysis for Gene Microarray Expression Profiles
- Complexity of Magnetic Resonance Spectrum Classification
- Data Complexity in Tropical Cyclone Positioning and Classification
- Human-Computer Interaction for Complex Pattern Recognition Problems
- Complex Image Recognition and Web Security
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Mitra Basu, Tin Kam Ho |
Collection | Advanced Information and Knowledge Processing |
Parution | 21/11/2006 |
Nb. de pages | 320 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 585g |
Intérieur | Noir et Blanc |
EAN13 | 9781846281716 |
ISBN13 | 978-1-84628-171-6 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Informatique Développement d'applications Algorithmique et informatique appliquée Intelligence artificielle
- Sciences Techniques Robotique
- Sciences Techniques Intelligence artificielle I.A. appliquée
- Sciences Techniques Intelligence artificielle Systèmes experts
- Sciences Techniques Intelligence artificielle Réseaux de neurones
- Sciences Techniques Automatique