Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Database Support for Data Mining Applications
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Database Support for Data Mining Applications

Database Support for Data Mining Applications

Discovering Knowledge with Inductive Queries

Rosa Meo, Pier Luca Lanzi, Mika Klemettinen - Collection LNAI 2682

323 pages, parution le 13/10/2004

Résumé

Data mining from traditional relational databases as well as from non-traditional ones such as semi-structured data, Web data, and scientific databases housing biological, linguistic, and sensor data has recently become a popular way of discovering hidden knowledge.

This book on database support for data mining is developed to approaches exploiting the available database technology, declarative data mining, intelligent querying, and associated issues, such as optimization, indexing, query processing, languages, and constraints. Attention is also paid to the solution of data preprocessing problems, such as data cleaning, discretization, and sampling.

The 16 reviewed full papers presented were carefully selected from various workshops and conferences to provide complete and competent coverage of the core issues. Some papers were developed within an EC funded project on discovering knowledge with inductive queries.

Sommaire

  • Database Languages and Query Execution
    • Inductive Databases and Multiple Uses of Frequent Itemsets: the clNQ Approach
    • Query Languages Supporting Descriptive Rule Mining: A Comparative Study
    • Declarative Data Mining Using SQL3
    • Towards a Logic Query Language for Data Mining
    • A Data Mining Query Language for Knowledge Discovery in a Geographical Information System
    • Towards Query Evaluation in Inductive Databases Using Version Spaces
    • The GUHA Method, Data Preprocessing and Mining
    • Constraint Based Mining of First Order Sequences in SeqLog
  • Support for KDD-Process
    • Interactivity, Scalability and Resource Control for Efficient KDD Support in DBMS
    • Frequent Itemset Discovery with SQL Using Universal Quantification
    • Deducing Bounds on the Support of Itemsets
    • Model-Independent Bounding of the Supports of Boolean Formulae in Binary Data
    • Condensed Representations for Sets of Mining Queries
    • One-Sided Instance-Based Boundary Sets
    • Domain Structures in Filtering Irrelevant Frequent Patterns
    • Integrity Constraints over Association Rules
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Rosa Meo, Pier Luca Lanzi, Mika Klemettinen
Collection LNAI 2682
Parution 13/10/2004
Nb. de pages 323
Format 15,5 x 23,5
Couverture Broché
Poids 508g
Intérieur Noir et Blanc
EAN13 9783540224792

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription