
FOUNDATIONSOF DEEP REINFORCEMENT LEARNING THEORY AND PRACTICE PYTHON
Laura Harding / Wah Loon Graesser
Résumé
Deep Reinforcement Learning in Python: A Hands-On Introduction is the fastest and most accessible way to get started with DRL. The authors teach through practical hands-on examples presented with their advanced OpenAI Lab framework. While providing a solid theoretical overview, they emphasize building intuition for the theory, rather than a deep mathematical treatment of results. Coverage includes:
- Components of an RL system, including environment and agents
- Value-based algorithms: SARSA, Q-learning and extensions, offline learning
- Policy-based algorithms: REINFORCE and extensions; comparisons with value-based techniques
- Combined methods: Actor-Critic and extensions; scalability through async methods
- Agent evaluation
- Advanced and experimental techniques, and more
- Chapter 1: Introduction to Reinforcement Learning
- Part I: Policy-Based and Value-Based Algorithms
- Chapter 2: Policy Gradient
- Chapter 3: State Action Reward State Action
- Chapter 4: Deep Q-Networks
- Chapter 5: Improving Deep Q-Networks
- Part II: Combined Methods
- Chapter 6: Advantage Actor-Critic
- Chapter 7: Proximal Policy Optimization
- Chapter 8: Parallelization Methods
- Chapter 9: Algorithm Summary
- Part III: Practical Tips
- Chapter 10: Getting Reinforcement Learning to Work
- Chapter 11: SLM Lab
- Chapter 12: Network Architectures
- Chapter 13: Hardward
- Chapter 14: Environment Design
- Epilogue
- Appendix A: Deep Reinforcement Learning Timeline
- Appendix B: Example Environments
- References
- Index
Wah Loon Keng likes building softwares for the research and application of theories in Computer Science and AI. He is an active open source contributor, and the creator of the data science platform at Eligible Inc. As a student, he did research on quantum foundation, computer science and mathematics. He is always interested in the theories of intelligence, especially reinforcement learning, semantics, and intuitive theories of mind. With his engineering skills, he is building experiment frameworks to test these theories, and OpenAI Lab is one.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Prentice |
Auteur(s) | Laura Harding / Wah Loon Graesser |
Parution | 01/12/2019 |
Nb. de pages | 360 |
EAN13 | 9780135172384 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse