Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Fundamentals of Image Data Mining: Analysis, Features, Classification and Retrieval
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Fundamentals of Image Data Mining: Analysis, Features, Classification and Retrieval

Fundamentals of Image Data Mining: Analysis, Features, Classification and Retrieval

Dengsheng Zhang

314 pages, parution le 23/05/2019

Résumé

This reader-friendly textbook presents a comprehensive review of the essentials of image data mining, and the latest cutting-edge techniques used in the field. discusses techniques for indexing, image ranking, and image presentation, along with image database visualization methods;

This reader-friendly textbook presents a comprehensive review of the essentials of image data mining, and the latest cutting-edge techniques used in the field. The coverage spans all aspects of image analysis and understanding, offering deep insights into areas of feature extraction, machine learning, and image retrieval. The theoretical coverage is supported by practical mathematical models and algorithms, utilizing data from real-world examples and experiments.

Topics and features: describes the essential tools for image mining, covering Fourier transforms, Gabor filters, and contemporary wavelet transforms; reviews a varied range of state-of-the-art models, algorithms, and procedures for image mining; emphasizes how to deal with real image data for practical image mining; highlights how such features as color, texture, and shape can be mined or extracted from images for image representation; presents four powerful approaches for classifying image data, namely, Bayesian classification, Support Vector Machines, Neural Networks, and Decision Trees; discusses techniques for indexing, image ranking, and image presentation, along with image database visualization methods; provides self-test exercises with instructions or Matlab code, as well as review summaries at the end of each chapter.

This easy-to-follow work illuminates how concepts from fundamental and advanced mathematics can be applied to solve a broad range of image data mining problems encountered by students and researchers of computer science. Students of mathematics and other scientific disciplines will also benefit from the applications and solutions described in the text, together with the hands-on exercises that enable the reader to gain first-hand experience of computing.

Part I: Preliminaries

Fourier Transform

Windowed Fourier Transform

Wavelet Transform

Part II: Image Representation and Feature Extraction

Color Feature Extraction

Texture Feature Extraction

Shape Representation

Part III: Image Classification and Annotation

Bayesian Classification

Support Vector Machines

Artificial Neural Networks

Image Annotation with Decision Trees

Part IV: Image Retrieval and Presentation

Image Indexing

Image Ranking

Image Presentation

Appendix: Deriving the Conditional Probability of a Gaussian Process

Dr. Dengsheng Zhang is a Senior Lecturer in the School of Science, Engineering and Information Technology at Federation University Australia.

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Dengsheng Zhang
Parution 23/05/2019
Nb. de pages 314
EAN13 9783030179885

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription