Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
GPU Parallel Program Development Using CUDA
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

GPU Parallel Program Development Using CUDA

GPU Parallel Program Development Using CUDA

Tolga soyata (author)

476 pages, parution le 11/02/2018

Résumé

Tolga Soyata is an associate professor in the Electrical and Computer Engineering department of SUNY Albany.

Part I Understanding CPU Parallelism

1. Introduction to CPU Parallel Programming

2. Developing Our First Parallel CPU Program

3. Improving Our First Parallel CPU Program

4. Understanding the Cores and Memory

5. Thread Management and Synchronization

Part II GPU Programming Using CUDA

6. Introduction to GPU Parallelism and CUDA

7. CUDA Host/Device Programming Model

8. Understanding GPU Hardware Architecture

9. Understanding GPU Cores

10. Understanding GPU Memory

11. CUDA Streams

Part III More To Know

12. CUDA Libraries (Mohamadhadi Habibzadeh, Omid Rajabi Shishvan , and Tolga Soyata)

13. Introduction to Open CL (Chase Conklin and Tolga Soyata)

14. Other GPU Programming Languages (Sam Miller and Tolga Soyata)

GPU Parallel Program Development using CUDA teaches GPU programming by showing the differences among different families of GPUs. This approach prepares the reader for the next generation and future generations of GPUs. The book emphasizes concepts that will remain relevant for a long time, rather than concepts that are platform-specific. At the same time, the book also provides platform-dependent explanations that are as valuable as generalized GPU concepts.

The book consists of three separate parts; it starts by explaining parallelism using CPU multi-threading in Part I. A few simple programs are used to demonstrate the concept of dividing a large task into multiple parallel sub-tasks and mapping them to CPU threads. Multiple ways of parallelizing the same task are analyzed and their pros/cons are studied in terms of both core and memory operation.

Part II of the book introduces GPU massive parallelism. The same programs are parallelized on multiple Nvidia GPU platforms and the same performance analysis is repeated. Because the core and memory structures of CPUs and GPUs are different, the results differ in interesting ways. The end goal is to make programmers aware of all the good ideas, as well as the bad ideas, so readers can apply the good ideas and avoid the bad ideas in their own programs.

Part III of the book provides pointer for readers who want to expand their horizons. It provides a brief introduction to popular CUDA libraries (such as cuBLAS, cuFFT, NPP, and Thrust),the OpenCL programming language, an overview of GPU programming using other programming languages and API libraries (such as Python, OpenCV, OpenGL, and Apple's Swift and Metal,) and the deep learning library cuDNN.

1st editionIllustrationsT385CUDA (Computer architecture)|Graphics processing units - Programming.|Parallel programming (Computer science)|Computer graphics.1FloridaBoca RatonTolga Soyata.Chapman & Hall/CRC Computational Science Series

Caractéristiques techniques

  PAPIER
Éditeur(s) Taylor&francis
Auteur(s) Tolga soyata (author)
Parution 11/02/2018
Nb. de pages 476
Format 178 x 254
Poids 1215g
EAN13 9781498750752

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription