
Information Extraction
Algorithms and Prospects in a Retrieval Context
Marie-Francine Moens - Collection The Information Retrieval Series
Résumé
Information extraction regards the processes of structuring and combining content that is explicitly stated or implied in one or multiple unstructured information sources. It involves a semantic classification and linking of certain pieces of information and is considered as a light form of content understanding by the machine. Currently, there is a considerable interest in integrating the results of information extraction in retrieval systems, because of the growing demand for search engines that return precise answers to flexible information queries. Advanced retrieval models satisfy that need and they rely on tools that automatically build a probabilistic model of the content of a (multi-media) document.
The book focuses on content recognition in text. It elaborates on the past and current most successful algorithms and their application in a variety of domains (e.g., news filtering, mining of biomedical text, intelligence gathering, competitive intelligence, legal information searching, and processing of informal text). An important part discusses current statistical and machine learning algorithms for information detection and classification and integrates their results in probabilistic retrieval models. The book also reveals a number of ideas towards an advanced understanding and synthesis of textual content.
The book is aimed at researchers and software developers interested in information extraction and retrieval, but the many illustrations and real world examples make it also suitable as a handbook for students.
Written for: Researchers, academic professors, students, software developers interested in information technology
Sommaire
- Information Extraction and Information Technology
- Information Extraction from an Historical Perspective
- The Symbolic Techniques
- Pattern Recognition
- Supervised Classification
- Unsupervised Classification Aids
- Integration of Information Extraction in Retrieval Models
- Evaluation of Information Extraction Technologies
- Case Studies
- The Future of Information Extraction in a Retrieval Context
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Marie-Francine Moens |
Collection | The Information Retrieval Series |
Parution | 13/10/2006 |
Nb. de pages | 258 |
Format | 16,5 x 24,5 |
Couverture | Relié |
Poids | 550g |
Intérieur | Noir et Blanc |
EAN13 | 9781402049873 |
ISBN13 | 978-1-4020-4987-3 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Informatique Bases de données
- Informatique Informatique d'entreprise Data warehouse et data mining
- Informatique Développement d'applications Algorithmique et informatique appliquée Intelligence artificielle
- Sciences Mathématiques Mathématiques appliquées
- Sciences Techniques Robotique
- Sciences Techniques Intelligence artificielle I.A. appliquée
- Sciences Techniques Intelligence artificielle Systèmes experts
- Sciences Techniques Intelligence artificielle Réseaux de neurones
- Sciences Techniques Automatique