Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Machine Learning for Data Streams
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Machine Learning for Data Streams

Machine Learning for Data Streams

Albert bifet (author)|ricard gavaldà (author)|geoff holmes (author)|bernhard pfahringer (author)

288 pages, parution le 29/03/2018

Résumé

Albert Bifet is Professor of Computer Science at Télécom ParisTech.

A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework.

Today many information sources -- including sensor networks, financial markets, social networks, and healthcare monitoring -- are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations.

The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.

IllustrationsQA76.9.D343Data mining.|Streaming technology (Telecommunications)1MassachusettsCambridge, Massachusetts9780262346054Albert Bifet, Ricard Gavaldà, Geoff Holmes, and Bernhard Pfahringer.Adaptive Computation and Machine Learning

Caractéristiques techniques

  PAPIER
Éditeur(s) Mit press
Auteur(s) Albert bifet (author)|ricard gavaldà (author)|geoff holmes (author)|bernhard pfahringer (author)
Parution 29/03/2018
Nb. de pages 288
Format 178 x 229
Poids 666g
EAN13 9780262037792

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription