LIVRAISON GARANTIE avant Noël pour vos achats avec Colissimo jusqu'au 20 décembre inclus sur tous les livres indiqués "Expédiés" sous 24h"
Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Machine Learning for High-Risk Applications: Techniques for Responsible AI
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Machine Learning for High-Risk Applications: Techniques for Responsible AI

Machine Learning for High-Risk Applications: Techniques for Responsible AI

Patrick / Curtis Hall

350 pages, parution le 27/02/2023

Résumé

This book describes responsible AI, a holistic approach for improving AI/ML technology, business processes, and cultural competencies that builds on best practices in risk management, cybersecurity, data privacy, and applied social science.The past decade has witnessed a wide adoption of artificial intelligence and machine learning (AI/ML) technologies. However, a lack of oversight into their widespread implementation has resulted in harmful outcomes that could have been avoided with proper oversight. Before we can realize AI/ML's true benefit, practitioners must understand how to mitigate its risks. This book describes responsible AI, a holistic approach for improving AI/ML technology, business processes, and cultural competencies that builds on best practices in risk management, cybersecurity, data privacy, and applied social science. It's an ambitious undertaking that requires a diverse set of talents, experiences, and perspectives. Data scientists and nontechnical oversight folks alike need to be recruited and empowered to audit and evaluate high-impact AI/ML systems. Author Patrick Hall created this guide for a new generation of auditors and assessors who want to make AI systems better for organizations, consumers, and the public at large. Learn how to create a successful and impactful responsible AI practice Get a guide to existing standards, laws, and assessments for adopting AI technologies Look at how existing roles at companies are evolving to incorporate responsible AI Examine business best practices and recommendations for implementing responsible AI Learn technical approaches for responsible AI at all stages of system developmentPatrick Hall is principal scientist at bnh.ai, a Cc.C.-based law firm focused on AI and data analytics, and visiting faculty at the George Washington University School of Business (GWSB). James Curtis is a quantitative researcher focused on US power markets and renewable resource asset management. Parul Pandey is a Machine Learning Engineer at Weights & Biases.

Caractéristiques techniques

  PAPIER
Éditeur(s) O'Reilly
Auteur(s) Patrick / Curtis Hall
Parution 27/02/2023
Nb. de pages 350
EAN13 9781098102432

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription