LIVRAISON GARANTIE avant Noël pour vos achats avec Colissimo jusqu'au 20 décembre inclus sur tous les livres indiqués "Expédiés" sous 24h"
Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotli
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotli

Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotli

Robert Johansson

700 pages, parution le 24/12/2018

Résumé

Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demonstrates how to numerically compute solutions and mathematically model applications in big data, cloud computing, financial engineering, business management and more.

Numerical Python, Second Edition , presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis.

After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning.

W hat You'll Learn

  • Work with vectors and matrices using NumPy
  • Plot and visualize data with Matplotlib
  • Perform data analysis tasks with Pandas and SciPy
  • Review statistical modeling and machine learning with statsmodels and scikit-learn
  • Optimize Python code using Numba and Cython
Who This Book Is For

Developers who want to understand how to use Python and its related ecosystem for numerical computing.

Numerical Python
1. Introduction to Computing with Python
2. Vectors, Matrices and Multidimensional Arrays
3. Symbolic Computing
4. Plotting and Visualization
5. Equation Solving
6. Optimization
7. Interpolation
8. Integration
9. Ordinary Differential Equations
10. Sparse Matrices and Graphs
11. Partial Differential Equations
12. Data Processing and Analysis
13. Statistics
14. Statistical Modeling
15. Machine Learning
16. Bayesian Statistics
17. Signal and Image Processing
18. Data Input and Output
19. Code Optimization

Robert Johansson is a numerical Python expert and computational scientist who has worked with SciPy, NumPy and QuTiP, an open-source Python framework for simulating the dynamics of quantum systems.

Caractéristiques techniques

  PAPIER
Éditeur(s) Apress
Auteur(s) Robert Johansson
Parution 24/12/2018
Nb. de pages 700
EAN13 9781484242452

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription