Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotli
Robert Johansson
Résumé
Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demonstrates how to numerically compute solutions and mathematically model applications in big data, cloud computing, financial engineering, business management and more.
Numerical Python, Second Edition , presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis.
After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning.
W hat You'll Learn
- Work with vectors and matrices using NumPy
- Plot and visualize data with Matplotlib
- Perform data analysis tasks with Pandas and SciPy
- Review statistical modeling and machine learning with statsmodels and scikit-learn
- Optimize Python code using Numba and Cython
Developers who want to understand how to use Python and its related ecosystem for numerical computing.
Numerical Python
1. Introduction to Computing with Python
2. Vectors, Matrices and Multidimensional Arrays
3. Symbolic Computing
4. Plotting and Visualization
5. Equation Solving
6. Optimization
7. Interpolation
8. Integration
9. Ordinary Differential Equations
10. Sparse Matrices and Graphs
11. Partial Differential Equations
12. Data Processing and Analysis
13. Statistics
14. Statistical Modeling
15. Machine Learning
16. Bayesian Statistics
17. Signal and Image Processing
18. Data Input and Output
19. Code Optimization
Caractéristiques techniques
| PAPIER | |
| Éditeur(s) | Apress |
| Auteur(s) | Robert Johansson |
| Parution | 24/12/2018 |
| Nb. de pages | 700 |
| EAN13 | 9781484242452 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse