Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed Examples in Pyth
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed Examples in Pyth

Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed Examples in Pyth

Ahmed Fawzy Gad

405 pages, parution le 05/12/2018

Résumé

Deploy deep learning applications into production across multiple platforms. You will work on computer vision applications that use the convolutional neural network (CNN) deep learning model and Python. This book starts by explaining the traditional machine-learning pipeline, where you will analyze an image dataset. Along the way you will cover artificial neural networks (ANNs), building one from scratch in Python, before optimizing it using genetic algorithms.

For automating the process, the book highlights the limitations of traditional hand-crafted features for computer vision and why the CNN deep-learning model is the state-of-art solution. CNNs are discussed from scratch to demonstrate how they are different and more efficient than the fully connected ANN (FCNN). You will implement a CNN in Python to give you a full understanding of the model.
After consolidating the basics, you will use TensorFlow to build a practical image-recognition model that you will deploy to a web server using Flask, making it accessible over the Internet. Using Kivy and NumPy, you will create cross-platform data science applications with low overheads.
This book will help you apply deep learning and computer vision concepts from scratch, step-by-step from conception to production.

What You Will Learn
  • Understand how ANNs and CNNs work
  • Create computer vision applications and CNNs from scratch using Python
  • Follow a deep learning project from conception to production using TensorFlow
  • Use NumPy with Kivy to build cross-platform data science applications

Who This Book Is For Data scientists, machine learning and deep learning engineers, software developers.
1. Introduction 2. Recognition in Computer Vision 3. Artificial Neural Network 4. Classification using ANN with Engineered Features 5. ANN Parameters Optimization 6. Convolutional Neural Networks 7. TensorFlow Recognition Application 8. Deploying Pre-Trained Models 9. Cross-Platform Data Science Applications.Appendix: Uploading Projects to PyPI
Ahmed Fawzy Gad is a teaching assistant who received his M.Sc. degree in 2018 after receiving his 2015 excellent with honors B.Sc. in information technology from the Faculty of Computers and Information (FCI), Menoufia University, Egypt. Ahmed is interested in deep learning, machine learning, computer vision, and Python. He aims to add value to the data science community by sharing his writings and preparing tutorials.

Caractéristiques techniques

  PAPIER
Éditeur(s) Apress
Auteur(s) Ahmed Fawzy Gad
Parution 05/12/2018
Nb. de pages 405
EAN13 9781484241660

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription