Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Recurrent neural networks for prediction
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Recurrent neural networks for prediction

Recurrent neural networks for prediction

Danilo P Mandic, Jonathon Chambers

284 pages, parution le 01/08/2001

Résumé

From mobile communications to robotics to space technology to medical instrumentation, new technologies are demanding increasingly complex methods of digital signal processing (DSP). This book shows researchers how recurrent neural networks can be implemented to expand the range of traditional signal processing techniques. Featuring original research on stability in neural networks, the book combines rigorous mathematical analysis with application examples. Experimental evidence as well as an overview of existing approaches are also included.

Table of Contents

  • I: RECURRENT NEURAL NETWORKS FOR PREDICTION.
  • 1. Neural networks for prediction-perspective.
  • 2. NARMA recurrent neural networks.
  • II: A POSTERIORI LEARNING IN RECURRENT NEURAL NETWORKS FOR PREDICTION.
  • 3. A posteriori recurrent neural networks.
  • 4. On the a priori adaptation a posteriori error algorithm.
  • 5. A full a posteriori learning algorithm.
  • III: NESTED RNN ARCHITECTURES—THE PIPELINED RECURRENT NEURAL NETWORK.
  • 6. The pipelined recurrent neural network.
  • 7. Towards an optimal PRNN.
  • IV: STABILITY ISSUES IN RNN ARCHITECTURES.
  • 8. A fixed point interpretation of convergence in networks with a sigmoid nonlinearity.
  • 9. Global asymptotic convergence of nonlinear relaxation equations realised through a recurrent perception.
  • 10. Stability of nonlinear NARMA relaxation for RNN architectures.
  • V: EXPLOITING INHERENT RELATIONSHIPS BETWEEN PARAMETERS IN RECURRENT NEURAL NETWORKS.
  • 11. Relationship between n and B for RNNs.
  • 12. Relationship between n and B for the PRNN.
  • 13. Conclusions.
  • Appendices.

Caractéristiques techniques

  PAPIER
Éditeur(s) Wiley
Auteur(s) Danilo P Mandic, Jonathon Chambers
Parution 01/08/2001
Nb. de pages 284
Format 17 x 25
Couverture Relié
Poids 725g
Intérieur Noir et Blanc
EAN13 9780471495178

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription