Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
A Gentle Course in Local Class Field Theory: Local Number Fields, Brauer Groups, Galois Cohomology
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

A Gentle Course in Local Class Field Theory: Local Number Fields, Brauer Groups, Galois Cohomology

A Gentle Course in Local Class Field Theory: Local Number Fields, Brauer Groups, Galois Cohomology

Pierre Guillot

250 pages, parution le 31/10/2018

Résumé

This book offers a self-contained exposition of local class field theory, serving as a second course on Galois theory. Written for beginning graduate students and advanced undergraduates, the material will find use across disciplines including number theory, representation theory, algebraic geometry, and algebraic topology.This book offers a self-contained exposition of local class field theory, serving as a second course on Galois theory. It opens with a discussion of several fundamental topics in algebra, such as profinite groups, p-adic fields, semisimple algebras and their modules, and homological algebra with the example of group cohomology. The book culminates with the description of the abelian extensions of local number fields, as well as the celebrated Kronecker-Weber theory, in both the local and global cases. The material will find use across disciplines, including number theory, representation theory, algebraic geometry, and algebraic topology. Written for beginning graduate students and advanced undergraduates, this book can be used in the classroom or for independent study.Part I. Preliminaries: 1. Kummer theory; 2. Local number fields; 3. Tools from topology; 4. The multiplicative structure of local number fields; Part II. Brauer Groups: 5. Skewfields, algebras, and modules; 6. Central simple algebras; 7. Combinatorial constructions; 8. The Brauer group of a local number field; Part III. Galois Cohomology: 9. Ext and Tor; 10. Group cohomology; 11. Hilbert 90; 12. Finer structure; Part IV. Class Field Theory: 13. Local class field theory; 14. An introduction to number fields.Pierre Guillot is a lecturer at the Universite de Strasbourg and a researcher at the Institut de Recherche Mathematique Avancee (IRMA). He has authored numerous research papers in the areas of algebraic geometry, algebraic topology, quantum algebra, knot theory, combinatorics, the theory of Grothendieck's dessins d'enfants, and Galois cohomology.

Caractéristiques techniques

  PAPIER
Éditeur(s) Cambridge University Press
Auteur(s) Pierre Guillot
Parution 31/10/2018
Nb. de pages 250
EAN13 9781108432245

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription