Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Cohomology of Drinfeld Modular Varieties: Series Number 56: Part 2: Automorphic Forms, Trace Formula
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Cohomology of Drinfeld Modular Varieties: Series Number 56: Part 2: Automorphic Forms, Trace Formula

Cohomology of Drinfeld Modular Varieties: Series Number 56: Part 2: Automorphic Forms, Trace Formula

Gerard / Waldspurger Laumon

380 pages, parution le 29/04/2009

Résumé

Cohomology of Drinfeld Modular Varieties provides an introduction, in two volumes, to both the subject of the title and the Langlands correspondence for function fields. It is based on courses given by the author and will be welcomed by workers in number theory and representation theory.Cohomology of Drinfeld Modular Varieties provides an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. This second volume is concerned with the Arthur-Selberg trace formula, and with the proof in some cases of the Rmamanujan-Petersson conjecture and the global Langlands conjecture for function fields. It is based on graduate courses taught by the author, who uses techniques which are extensions of those used to study Shimura varieties. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated. Several appendices on background material keep the work reasonably self-contained. It is the first book on this subject and will be of much interest to all researchers in algebraic number theory and representation theory.Preface; 9. Trace of fA on the discrete spectrum; 10. Non-invariant Arthur trace formula: the geometric side; 11. Non-invariant Arthur trace formula: the spectral side; 12. Cohomology with compact supports of Drinfeld modular varieties; 13. Intersection cohomology of Drinfeld modular varieties; Appendix D. Representations of unimodular, locally compact, totally discontinuous, separated topological groups: addendum; Appendix E. Reduction theory and strong approximation; Appendix F. Proof of lemma 10. 6. 4; Appendix G. The decomposition of L2G following the cuspidal data.

Caractéristiques techniques

  PAPIER
Éditeur(s) Cambridge University Press
Auteur(s) Gerard / Waldspurger Laumon
Parution 29/04/2009
Nb. de pages 380
EAN13 9780521109901

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription