Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Fundamentals of Terahertz Devices and Applications
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Fundamentals of Terahertz Devices and Applications

Fundamentals of Terahertz Devices and Applications

Dimitris Pavlidis

600 pages, parution le 02/06/2021

Résumé

The book will address fundamentals of THz devices and their applications. THz technology relates to applications that span in frequency from a few hundred GHz to more than 1000 GHz. They require devices for signal generation, detection and treatment the characteristics of which have been reported in various publications but their in-depth understanding is often lacking or requires the consultation of multiple references. It is the purpose of this book to address the above topics in a way that both the beginner and advanced reader can obtain a better understanding of device operation and use.About the Editor Acknowledgements [still to follow] Chapter 1: Introduction to THz Technologies Dimitris Pavlidis Chapter 2: THz Antennas Maria Alonso-delPino and Nuria Llombart Juan Introduction Elliptical Lens Antennas 2.1 Elliptical Lens Synthesis 2.2 Radiation of Elliptical Lenses 2.2.1 Transmission function T ?(Q) 2.2.2 Spreading Factor S(Q) 2.2.3 Equivalent Current Distribution and Far-Field Calculation 2.2.4 Lens Reflection Efficiency 3. Extended Semi-Hemispherical lens antennas 3. 1 Radiation of extended semi-hemispherical lenses 4. Shallow Lenses excited by leaky wave /Fabry-Perot feeds 4.1.Analysis of the leaky-wave propagation constant 4.2 Primary fields radiated by a leaky-wave antenna feed on an infinite medium 4.3 Shallow-Lens geometry optimization 5. Fly-eye Antenna Array 5.1 Silicon DRIE micromachining process at submillimeter-wave frequencies 5.1.1 Fabrication of silicon lenses using DRIE 5.1.2 Surface Accuracy 5.2 Examples of fabricated antennas Chapter 3: Photoconductive THz Sources Driven at 1550 nm E.R. Brown, G. Carpintero del Barrio, A. Rivera, D. Segovia-Vargas, B. Globisch, and A. Steiger I. Introduction Overview of THz Photoconductive Sources Lasers and Fiber Optics II. 1550-nm THz photoconductive sources II.A. Epitaxial Materials Bandgap Engineering Low Temperature Growth II.B. Device Types and Modes of Operation II.C. Analysis of THz photoconductive sources II.C.1. PC-Switch Analysis II.C.2. Photomixer Analysis II.C.2.a. p-i-n photodiode II.C.2.b. MSM bulk photoconductor II.D. Practical Issues Contact Effects Thermal Effects Circuit Limitations III. THz Metrology Power Measurements A Traceable Power Sensor Exemplary THz Power Measurement Exercise Other Sources of Error Frequency Metrology IV. THz Antenna Coupling Fundamental Principles Planar antennas on dielectric substrates Input Impedance EIRP (increase in the EIRP of the transmitting antenna) G/T or Aeff/T Estimation of Power Coupling Factor Exemplary THz Planar Antennas Resonant antennas Quick survey of self-complementary antennas V. State-of-the-Art in 1550-nm Photoconductive Sources Error! Bookmark not defined. 1550-nm MSM Photoconductive Switches Material and Device Design THz Performance 1550-nm Photodiode CW (photomixer) Sources Material and Device Design THz Performance VI. Alternative 1550-nm THz Photoconductive Sources Error! Bookmark not defined. Fe-Doped InGaAs ErAs Nanoparticles in GaAs: Extrinsic Photoconductivity VII. System Applications Error! Bookmark not defined. Comparison between pulsed and cw THz systems Device aspects Systems aspects Wireless Communications THz Spectroscopy Time vs Frequency Domain Systems Analysis of Frequency Domain Systems: Amplitude and Phase Modulation Exercises Chapter 4 : THz Photomixers E. Peytavit, G. Ducournau, J-F. Lampin 1. Introduction 2. Elliptical Lens Antennas 2.1 Elliptical Lens Synthesis 2.2 Radiation of Elliptical Lenses 2.2.1 Transmission function TQ 2.2.2 Spreading Factor SQ 2.2.3 Equivalent Current Distribution and Far-Field Calculation 2.2.4 Lens Reflection Efficiency 3. Extended Semi-Hemispherical lens antennas 3. 1 Radiation of extended semi-hemispherical lenses 4. Shallow Lenses excited by leaky wave /Fabry-Perot feeds 4.1.Analysis of the leaky-wave propagation constant 4.2 Primary fields radiated by a leaky-wave antenna feed on an infinite medium 4.3 Shallow-Lens geometry optimization 5. Fly-eye Antenna Array 5.1 Silicon DRIE micromachining process at submillimeter-wave frequencies 5.1.1 Fabrication of silicon lenses using DRIE 5.1.2 Surface Accuracy 5.2 Examples of fabricated antennas Chapter 5: Plasmonics-enhanced Photoconductive Terahertz Devices Ping Keng Lu and Mona Jarrahi Introduction Photoconductive Antennas Photoconductors for THz operation Photoconductive THz emitters Pulsed THz emitters Continuous-wave THz emitters Photoconductive THz Detectors Common photoconductors and antennas for photoconductive THz devices Plasmonics-enhanced photoconductive antennas Fundamentals of plasmonics Plasmonics for enhancing performance of photoconductive THz devices Principles of plasmonic enhancement Design considerations for plasmonic nanostructures State-of-the-art plasmonics-enhanced photoconductive THz devices Photoconductive THz devices with plasmonic contact electrodes Large area plasmonic photoconductive nanoantenna arrays Plasmonic photoconductive THz devices with optical nanocavities Conclusion and Outlook Chapter 6 : Terahertz Quantum Cascade Lasers Roberto Paiella 1. Introduction 2. Fundamentals of Intersubband Transitions 3. Active Material Design 4. Optical Waveguides and Cavities 5. State-of-the-Art Performance and Limitations 6. Novel Materials Systems 6.1 III-Nitride Quantum Wells 6.2 SiGe Quantum Wells 7. Conclusion Chapter 7: Advanced Devices Using Two-Dimensional Layer Technology Berardi Sensale-Rodriguez 7.1. Graphene-based THz Devices 7.1.1. THz Properties of graphene 7.1.2. How to simulate and model graphene? 7.1.3. Terahertz device applications of graphene Modulators - Broadband structures - Electromagnetic-cavity integrated structures - Graphene/metal -hybrid metamaterials - Graphene/dielectric -hybrid metamaterials - Active filters - Phase modulation in graphene-based metamaterials 7.2. TMD based THz Devices 7.3. Applications Chapter 8: THz Plasma Field Effect Transistor Detectors Naznin Akter, Nezih Pala, Wojcieech Knap, Michael Shur Introduction Field effect transistors (fets) and thz plasma oscillations 2.1. Dispersion of plasma waves in fets 2.2. THz detection by an fet Resonant detection Broadband detection THz detectors based on silicon fets Terahertz detection by graphene plasmonic fets Terahertz detection in black-phosphorus nano-transistors Diamond plasmonic thz detectors Conclusion [Was Chapter 13] Chapter 9: Signal Generation by Diode Multiplication Alain Maestrini and Jose Siles 1 Introduction 3 2 Bridging the microwave to photonics gap with terahertz frequency multipliers 3 3 A practical approach to the design of frequency multipliers 5 3.1 Frequency multiplier versus comb generator 5 3.2 Frequency multiplier ideal matching network and ideal device performance 6 3.3 Symmetry at device level versus symmetry at circuit level 7 3.4 Classic balanced frequency doublers 8 3.4.1 General circuit description 8 3.4.2 Necessary condition to balance the circuit 9 3.5 Balanced frequency triplers with an anti-parallel pair of diodes 11 3.6 Multi-anode frequency triplers in a virtual loop configuration 12 3.6.1 General circuit description 12 3.6.2 Necessary condition to balance the circuit 14 3.7 Multiplier design optimization 15 3.7.1 General design methodology 16 3.7.2 Non-linear modeling of the Schottky diode barrier 22 3.7.3 3D modeling of the extrinsic structure of the diodes 23 3.7.4 Modeling and optimization of the diode cell 24 3.7.5 Input and output matching circuits. 26 4 Technology of THz diode frequency multipliers 26 4.1 From Whisker-contacted diodes to Planar Discrete Diodes 26 4.2 Semi-monolithic frequency multipliers at THz frequencies 27 4.3 THz local oscillators for the Heterodyne Instrument of Herschel Space Observatory 29 4.4 First 2.7THz multiplier chain with more than 10W of power at room temperature 32 4.5 High power 1.6THz frequency multiplied source for future 4.75THz local oscillator 34 5 Power-combining at sub-millimeter wavelength 36 5.1 In-phase power combining 36 5.1.1 First in-phase power-combined submillimeter-wave frequency multiplier 37 5.1.2 In-phase power combining at 900GHz 38 5.1.3 In-phase power-combined balanced doublers 40 5.2 In-channel power combining 41 5.3 Advanced on-chip power combining 42 5.3.1 High power 490-560GHz frequency tripler 43 5.3.2 Dual-Output 550 GHz Frequency Tripler 43 5.3.3 High-power quad channel 165-195GHz frequency doubler 44 6 Conclusions and perspectives 46 7 References 46 8 Problems 52 [WasChapter 9] Chapter 10: GaN Multipliers Chong Jin and Dimitris Pavlidis 1 Introduction 1.1 Frequency Multipliers 1.2 Properties of Nitride Materials 1.3 Motivation and Challenges 2 Theoretical Considerations of GaN Schottky Diode Design 2.1 Analysis by Analytical Equations 2.1.1 Nonlinearity and Harmonic Generation 2.1.2 Nonlinearity of Ideal Schottky Diode 2.1.3 Series Resistance 2.2 Analysis by numeric simulation 2.2.1 Introduction of Semiconductor Device Numerical Simulation 2.2.2 Parameters for GaN Based Device Simulation 2.2.3 Simulation Results Device Structure Breakdown voltage I-V characteristics Series resistance C-V characteristics Time Domain Transient Analysis 2.3 Conclusions on Theoretical Considerations of GaN Schottky Diode Design 3 Fabrication Process of GaN Schottky Diodes 3.1 Fabrication Process 3.2 Etching 3.3 Metallization 3.3.1 Ohmic Contacts on GaN 3.3.2 Schottky Contacts on GaN Analysis of Schottky contact characteristics Oxygen plasma before Schottky metallization 3.4 Bridge Interconnects Dielectric Bridge Optical Air-bridge E-Beam Air-bridge 3.5 Conclusion on Fabrication Process of GaN Schottky Diodes Small-signal High Frequency Characterization of GaN Schottky 4 Diodes 4.1 Current-Voltage Characteristics 4.2 Small-signal Characterization and Equivalent Circuit Modeling Step 1. Parasitic elements Step 2. Junction Capacitance Step 3. Optimization Summary 4.3 Results 4.4 Conclusion 5 Large-Signal On-wafer Characterization 5.1 Characterization Approach 5.2 Large signal measurements of GaN Schottky diodes 5.2.1 LSNA with 50 ? load Time domain waveforms Power handling characteristics 5.3 LSNA with harmonic loadpull 5.4 Conclusion 6 GaN Diode Implementation for Signal generation 6.1 Large-signal modeling of GaN Schottky diodes 6.2 Frequency Doubler 7 Multiplier Considerations for Optimum Performance Exercises [Was Chapter 10] Chapter 11: THz Resonant Tunneling Devices Masahiro Asada and Safumi Suzuki 10.1 Introduction 10.2 Basic structure and operation of RTD 10.2.1 Basic operation of RTD 10.2.2 Principle of oscillation 10.2.3 Effect of electron delay time 10.3 Structure and oscillation characteristics of fabricated RTD oscillators 10.3.1 Actual structure of RTD oscillators 10.3.2 High-frequency oscillation 10.3.3 High-output power oscillation 10.4 Control of oscillation spectrum and frequency 10.4.1 Oscillation spectrum and phase-locked loop 10.4.2 Frequency-tunable oscillators 10.5 Targeted applications 10.5.1 High-speed wireless communications 10.5.2 Spectroscopy 10.5.3 Other applications and expected future development [Was Chapter 11] Chapter 12: Wireless communications in the THz range G. Ducournau, T. Nagatsuma 11.1 Evolution of telecoms towards THz 11.1.1 Brief historic 11.1.2 Data rate evolution 11.1.3 THz waves: propagation, advantages and disadvantages 11.1.4 Frequency bands 11.1.5 Potential scenarios 11.1.6 Comparison between FSO and THz 11.2 THz technologies: transmitters, receivers and basic architecture 11.2.1 THz sources 11.2.2 THz receivers 11.2.3 Basic architecture of the transmission system 11.3 Devices/function examples for T-ray coms 11.3.1 Photomixing techniques for THz coms 11.3.2 THz modulated signals enabled by photomixing 11.3.3 Other techniques for the generation of modulated THz signals 11.3.4 Integration, interconnections and antennas 11.3.4.1 Integration 11.3.4.2 Antennas 11.4 THz links 11.4.1 Modulations and key Indicators of a THz Communication Link 11.4.2 State of the art of THz links 11.4.2.1 First systems 11.4.2.2 Photonics-based demos 11.4.2.3 Electronic-based demos 11.4.2.4 Beyond 100 GHz high power amplification 11.4.2.5 Table of reported systems 11.5 Towards normalisation of 100G links in the THz range 11.6 Conclusion Error! Bookmark not defined. 11. 7 Acronyms 11.8 References 11.9 Exercice : link budget of a THz link [Was Chapter 12] Chapter 13: THz Applications: Devices to Space System Imran Mehdi 12.1 INTRODUCTION 12.1.1 Why is THz technology important for space science? 12.1.2 Fundamentals of THz Spectroscopy 12.1.3 THz Technology for Space Exploration 12.2 THz HETERODYNE RECEIVERS 12.2.1 Local Oscillators 12.2.1.1 Frequency Multiplied Chains 12.2.2 Mixers 12.2.2.1 Room Temperature Schottky Diode Mixers 12.2.2.2 SIS Mixer Technology 12.2.2.3 Hot Electron Bolometric (HEB) Mixers 12.2.2.4 State-of-the-Art Receiver Sensitivities 12.3 THZ SPACE APPLICATIONS 12.3.1 Planetary Science: The Case for Miniaturization 12.3.2 Astrophysics: The Case for THz Array Receivers 12.3.3 Earth Science: The Case for Active THz Systems 12.4 SUMMARY AND FUTURE TRENDS 12.5 REFERENCES AND CITATIONS 12.6 PROBLEMS Index

Caractéristiques techniques

  PAPIER
Éditeur(s) Wiley
Auteur(s) Dimitris Pavlidis
Parution 02/06/2021
Nb. de pages 600
EAN13 9781119460718

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription