Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Geometric computing for perception action systems
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Geometric computing for perception action systems

Geometric computing for perception action systems

Concepts, algorithms, and Scientific applications

Eduardo Baryo Corrochano

306 pages, parution le 15/07/2001

Résumé

All the efforts to build an intelligent machine have not yet produced a satisfactory autonomous system despite the great progress that has been made in developing computer hardware over the last three decades. The complexity of the tasks that a cognitive system must perform is still not understood well enough. Let us call the endeavor of building intelligent systems as the construction of Perception Action Cycles (PAC). The key idea is to incorporate representation and learning in a flexible geometric system. Until now this issue has always been a matter of neurocomputing. The most frequently used algebraic system for neurocomputation is matrix algebra. However, calculations in geometric algebra often reveal a geometric structure which remains obscure in the equivalent matrix computations. The development of PAC in a unified comprehensive mathematical system is urgently needed to bring unity and coherance to the problems of artificial intelligence. Accordingly, we are motivated by the challenge of applying geometric algebra to the development of PAC systems. Geometric algebra provides the general mathematical framework for the development of the ideas of multi-linear algebra, multi-variable analysis, and the representation of LIE groups and LIE algebras. There is strong evidence that geometric algebra can be used to carry out efficient computations at all levels in the cognitive system. Geometric algebra reduces the complexity of algebraic expressions and as a result, it improves algorithms both in speed and accuracy. Thus, our goal is to construct PAC systems solely in the geometric algebra language. The preliminary chapters of this book introduce the reader to geometric algebra and the necessary mathematical concepts that will be needed. The latter chapters deal with a variety of applications in the field of cognitive systems in

Contents

  • Mathematical Preliminaries
  • Lie Algebras and Geometric Algebra for Robotics and Image Analysis
  • Kinematics of 2-Space and 3-Space
  • Mathematics of the Human Eye
  • Image Analysis and Low Level Operations
  • Theory of Extended Kalman Filter
  • Geometric Algebra of Computer Vision
  • Analysis and Computation of Projective Invariants
  • Geometric Computing of Intrinsic Camera Parameters
  • Geometric Approach for Computing Shape and Motion
  • Geometric Neural Computing
  • Geometric Computing in Robotics

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Eduardo Baryo Corrochano
Parution 15/07/2001
Nb. de pages 306
Format 16 x 24
Couverture Relié
Poids 495g
Intérieur Noir et Blanc
EAN13 9780387951911

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription