Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Goedel's Theorems and Zermelo's Axioms: A Firm Foundation of Mathematics
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Goedel's Theorems and Zermelo's Axioms: A Firm Foundation of Mathematics

Goedel's Theorems and Zermelo's Axioms: A Firm Foundation of Mathematics

Lorenz / Krapf Halbeisen

236 pages, parution le 16/10/2021

Résumé

A recurring theme in the whole book consists of standard and non-standard models of several theories, such as Peano arithmetic, Presburger arithmetic and the real numbers.

The book addresses undergraduate mathematics students and is suitable for a one or two semester introductory course into logic and set theory.

This book provides a concise and self-contained introduction to the foundations of mathematics. The first part covers the fundamental notions of mathematical logic, including logical axioms, formal proofs and the basics of model theory. Building on this, in the second and third part of the book the authors present detailed proofs of Goedel's classical completeness and incompleteness theorems. In particular, the book includes a full proof of Goedel's second incompleteness theorem which states that it is impossible to prove the consistency of arithmetic within its axioms. The final part is dedicated to an introduction into modern axiomatic set theory based on the Zermelo's axioms, containing a presentation of Goedel's constructible universe of sets. A recurring theme in the whole book consists of standard and non-standard models of several theories, such as Peano arithmetic, Presburger arithmetic and the real numbers.

The book addresses undergraduate mathematics students and is suitable for a one or two semester introductory course into logic and set theory. Each chapter concludes with a list of exercises.



A Natural Approach to Natural Numbers.- Part I Introduction to First-Order Logic.- Syntax: The Grammar of Symbols.- Semantics: Making Sense of the Symbols.- Soundness & Completeness.- Part II Goedel's Completeness Theorem.- Maximally Consistent Extensions.- Models of Countable Theories.- The Completeness Theorem.- Language Extensions by Definitions.- Part III Goedel's Incompleteness Theorems.- Models of Peano Arithmetic and Consequences for Logic.- Arithmetic in Peano Arithmetic.- Goedelisation of Peano Arithmetic.- The Incompleteness Theorems.- The Incompleteness Theorems Revisited.- Completeness of Presburger Arithmetic.- Models of Arithmetic Revisited.- Part IV Zermelo's Axioms.- Axioms of Set Theory.- Models of Set Theory.- Models of the Natural and the Real Numbers.- Tautologies.Lorenz Halbeisen is Lecturer at the ETH Zurich since 2014.


Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Lorenz / Krapf Halbeisen
Parution 16/10/2021
Nb. de pages 236
EAN13 9783030522810

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription