
Goedel's Theorems and Zermelo's Axioms: A Firm Foundation of Mathematics
Lorenz / Krapf Halbeisen
Résumé
The book addresses undergraduate mathematics students and is suitable for a one or two semester introductory course into logic and set theory.
This book provides a concise and self-contained introduction to the foundations of mathematics. The first part covers the fundamental notions of mathematical logic, including logical axioms, formal proofs and the basics of model theory. Building on this, in the second and third part of the book the authors present detailed proofs of Goedel's classical completeness and incompleteness theorems. In particular, the book includes a full proof of Goedel's second incompleteness theorem which states that it is impossible to prove the consistency of arithmetic within its axioms. The final part is dedicated to an introduction into modern axiomatic set theory based on the Zermelo's axioms, containing a presentation of Goedel's constructible universe of sets. A recurring theme in the whole book consists of standard and non-standard models of several theories, such as Peano arithmetic, Presburger arithmetic and the real numbers.
The book addresses undergraduate mathematics students and is suitable for a one or two semester introductory course into logic and set theory. Each chapter concludes with a list of exercises.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Lorenz / Krapf Halbeisen |
Parution | 16/10/2021 |
Nb. de pages | 236 |
EAN13 | 9783030522810 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse