Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Market Models
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Market Models

Market Models

A Guide to Financial Data Analysis

Carol Alexander

494 pages, parution le 01/09/2001

Résumé

Models play a crucial role in today's financial markets and an understanding and appreciation of how to model financial data is key to any finance practitioner's skill set. This book provides an authoritative and up-to-date treatment of model development. As well as numerous real world examples to illustrate concepts in an accessible manner, the accompanying CD will allow the reader to implement the examples themselves and adapt them for their own purposes. The ideal reference for those involved in model selection and development.

Contents

Chapter 1: Linear Models.

  • 1.1 Introduction.
  • 1.1.1 The Simple Linear Model.
  • 1.1.2 The Capital Asset Pricing Model.
  • 1.1.3 Risk Attribution in the Capital Asset Pricing Model.
  • 1.2 Multivariate Models.
  • 1.2.1 Ordinary Least Squares.
  • 1.2.2 The Arbitrage Pricing Model.
  • 1.2.3 Estimating Factor Sensitivities in the Arbitrage Pricing Model.
  • 1.2.4 Using Multifactor Models to Analyse Portfolio Risk.
  • 1.2.5 Benchmarking and Index Tracking.
  • 1.3 Properties of Estimators.
  • 1.3.1 Unbiasedness, Efficiency and Consistency.
  • 1.3.2. Properties of OLS Estimators with Non-Stochastic Regressors.
  • 1.3.3 Properties of OLS with Stochastic Regressors.
  • 1.3.4 Estimating the Covariance Matrix of the OLS Estimators.
  • 1.3.5 When are OLS Estimators Normally Distributed?
  • 1.4 Statistical Inference.
  • 1.4.1 Hypothesis Testing and Confidence Intervals.
  • 1.4.2 t-tests.
  • 1.4.3 F-tests.
  • 1.4.4 The Analysis of Variance.
  • 1.4.5 Wald, Lagrange Multiplier and Likelihood Ratio Tests.
  • 1.5 Model Specification.
  • 1.5.1 Autocorrelation.
  • 1.5.2 Unconditional Heteroscedasticity.
  • 1.5.3 Generalised Least Squares.
  • 1.5.4 Testing Down.
  • 1.5.5 A Remark on Model Specification.
  • 1.6 Data Problems.
  • 1.6.1 Multicollinearity.
  • 1.6.2 Errors in Measurement.
  • 1.6.3 Missing Data.
  • 1.6.4 Dummy Variables.
  • 1.7 Principal Components Analysis.
  • 1.7.1 Definition and General Applications.
  • 1.7.2 Application of PCA to Yield Curves.
  • 1.7.3 Orthogonal Factor Models.
  • 1.7.4 Using PCA to Generate Covariance Matrices.
  • 1.8 Likelihood Methods and Bayesian Inference.
  • 1.8.1 The Likelihood Function, MLE and LR Tests.
  • 1.8.2 Propertiesof Maximum Likelihood Estimators.
  • 1.8.3 Likelihood Function and MLE for a Normal Density Function.
  • 1.8.4 Applications of Maximum Likelihood to Financial Markets.
  • 1.8.5 Introducing Bayesian Estimation.
  • 1.8.6 Bayesian Estimation of Factor Models.
  • 1.9 Forecasting and Model Validation.
  • 1.9.1 Point Predictions and Confidence Intervals.
  • 1.9.2 Post-sample Predictive Testing and Back Testing.
  • 1.9.3 Statistical Evaluation Methods.
  • 1.9.4 Operational Evaluation Methods.
  • 1.10 Mean-Variance Analysis.
  • 1.10.1 Minimum Variance Portfolios.
  • 1.10.2 Utility Theory.
  • 1.10.3 Efficient Portfolios with a Risk Free Asset.
  • 1.10.4 Efficient Portfolios in Practice.
Chapter 2: Volatility and Correlation.
  • 2.1 The Nature of Volatility and Correlation.
  • 2.1.1 Statistical Definitions.
  • 2.1.2 Implied Volatility.
  • 2.1.3 Implied Correlation.
  • 2.1.4 Conditional and Unconditional Distributions.
  • 2.2 Weighted Average Estimates of Volatility and Correlation.
  • 2.2.1 Equally Weighted Moving Averages.
  • 2.2.2 Exponentially Weighted Moving Averages.
  • 2.2.3 The Square Root of Time Rule.
  • 2.2.4 The RiskMetrics Data.
  • 2.2.5 An Alternative to RiskMetrics.
  • 2.3 Generalized Autoregressive Conditional Heteroscedasticity.
  • 2.3.1 The Conditional Mean and Conditional Variance Equations.
  • 2.3.2 A Survey of Univariate GARCH Models.
  • 2.3.3 Getting the Right Data for GARCH Modelling.
  • 2.3.4 GARCH Parameter Estimation and Model Specification.
  • 2.3.5 GARCH Volatility Forecasting.
  • 2.3.6 Option Pricing and Hedging with Univariate GARCH.
  • 2.3.7 GARCH Correlation and Time Varying Betas.
  • 2.3.8 A Survey of Multivariate GARCH Models.
  • 2.3.9 Comparison of Results from Different Multivariate GARCH Models.
  • 2.4 Forecasting Volatility and Correlation.
  • 2.4.1 Combining Volatility Forecasts.
  • 2.4.2 Methods for Evaluating the Accuracy of Point Forecasts.
  • 2.4.3 Confidence Intervals.
  • 2.4.4 Generating P&L Distributions Due to Uncertain Volatility.
  • 2.4.5 A Bayesian Approach to Volatility Forecasting.
Chapter 3: Time Series Analysis.
  • 3.1 Stationary and Integrated Processes.
  • 3.1.1 Introduction.
  • 3.1.2 ARMA Models.
  • 3.1.3 Unit Root Tests.
  • 3.1.4 Time Series Properties of Financial Markets.
  • 3.2 Cointegration.
  • 3.2.1 Introduction.
  • 3.2.2 Cointegration Tests.
  • 3.2.3 Error Correction and Causality.
  • 3.2.4 Cointegration and Market Efficiency.
  • 3.3 Applications of Cointegration to Financial Markets.
  • 3.3.1 Yield Curves.
  • 3.3.2 Spot and Futures Markets.
  • 3.3.3 Energy Markets.
  • 3.3.4 Equity Markets.
  • 3.3.5 Market Integration.
  • 3.4 Modelling High Frequency Data.
  • 3.4.1 Properties of High Frequency Financial Data.
  • 3.4.2 Modelling Non-Normal Distributions of High Frequency Returns.
  • 3.4.3 Chaos in Financial Markets.
  • 3.4.4 Neural Networks and Non-Linear Prediction Algorithms.
Chapter 4: Value-at-Risk.
  • 4.1 The Regulatory Environment.
  • 4.1.1 Recommendations for Internal Models of Market Risk Capital.
  • 4.1.2 Comparison with Capital Charges based on Standardised Rules.
  • 4.1.3 Back Testing and Model Classification.
  • 4.1.4 Stress Testing Portfolios.
  • 4.2 Measuring Risk.
  • 4.2.1 Advantages and Limitations of VaR.
  • 4.2.2 Coherent Risk Measures.
  • 4.2.3 Measuring Downside Risk.
  • 4.3 The Covariance Method.
  • 4.3.1 Linear Portfolios.
  • 4.3.2 Covariance VaR of Equity Portfolios.
  • 4.3.3 Covariance VaR of Commodities and Cash-Flows.
  • 4.3.4 Advantages and Limitations.
  • 4.4 Historical Simulation.
  • 4.4.1 Outline of Method.
  • 4.4.2 Comparison with Covariance VaR.
  • 4.4.3 Modifications: Exponential Weighting and Cholesky Transformations.
  • 4.4.4 Advantages and Limitations.
  • 4.5 Monte Carlo Methods.
  • 4.5.1 Risk Factors in Options Portfolios.
  • 4.5.2 Method Outlined.
  • 4.5.3 Modifications: Advanced Sampling and Portfolio Value Approximations.
  • 4.5.4 Advantages and Limitations.
  • 4.6 Scenario Analysis.
  • 4.6.1 The Scenario Library.
  • 4.6.2 Grid Search for Worst Case Loss.
  • 4.6.3 Scenario Analysis using Principal Components.
  • 4.6.4 Stress Testing.

Caractéristiques techniques

  PAPIER
Éditeur(s) Wiley
Auteur(s) Carol Alexander
Parution 01/09/2001
Nb. de pages 494
Format 19 x 25
Couverture Relié
Poids 1307g
Intérieur Noir et Blanc
EAN13 9780471899754

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription