Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Monte Carlo Methods in Bayesian Computation
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Monte Carlo Methods in Bayesian Computation

Monte Carlo Methods in Bayesian Computation

Ming-Hui Sheng, Qi-Man Shao, Joseph G. Ibrahim - Collection Springer Series In Statistics

386 pages, parution le 01/01/2000

Résumé

This book examines advanced Bayesian computational methods. It presents methods for sampling from posterior distributions and discusses how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples. This book examines each of these issues in detail and heavily focuses on computing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo methods for estimation of posterior quantities, improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss computions involving model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches. The book presents an equal mixture of theory and applications involving real data. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners. Ming-Hui Chen is Associate Professor of Mathematical Sciences at Worcester Polytechnic Institute, Qu-Man Shao is Assistant Professor of Mathematics at the University of Oregon. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute.

Sommaire

  • Markov Chain Monte Carlo Sampling
  • Basic Monte Carlo Methods for Estimating Posterior Quantities
  • Estimating Marginal Posterior Densities
  • Estimating Ratios of Normalizing Constants
  • Monte Carlo Methods for Constrained Parameter Problems
  • Computing Bayesian Credible and HPD Intervals
  • Bayesian Approaches for Comparing Non-Nested Models
  • Bayesian Variable Section
  • Other Topics
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Ming-Hui Sheng, Qi-Man Shao, Joseph G. Ibrahim
Collection Springer Series In Statistics
Parution 01/01/2000
Nb. de pages 386
Format 16,3 x 24,2
Couverture Relié
Poids 721g
Intérieur Noir et Blanc
EAN13 9780387989358
ISBN13 978-0-387-98935-8

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription