
New Directions in Statistical Signal Processing
From Systems to Brains
Simon Haykin, José C. Principe, Terrence J. Sejnowski, John McWhirter
Résumé
Signal processing and neural computation have separately and significantly influenced many disciplines, but the cross-fertilization of the two fields has begun only recently. Research now shows that each has much to teach the other, as we see highly sophisticated kinds of signal processing and elaborate hierachical levels of neural computation performed side by side in the brain. In New Directions in Statistical Signal Processing, leading researchers from both signal processing and neural computation present new work that aims to promote interaction between the two disciplines.
The book's 14 chapters, almost evenly divided between signal processing and neural computation, begin with the brain and move on to communication, signal processing, and learning systems. They examine such topics as how computational models help us understand the brain's information processing, how an intelligent machine could solve the "cocktail party problem" with "active audition" in a noisy environment, graphical and network structure modeling approaches, uncertainty in network communications, the geometric approach to blind signal processing, game-theoretic learning algorithms, and observable operator models (OOMs) as an alternative to hidden Markov models (HMMs).
L'auteur - Simon Haykin
is University Professor and Director of the Adaptive Systems Laboratory at McMaster University (Ontario, Canada)
L'auteur - José C. Principe
José C. Príncipe is Distinguished Professor of Electrical and Biomedical Engineering at the University of Florida, Gainesville, where he is BellSouth Professor and Founder and Director of the Computational NeuroEngineering Laboratory.
L'auteur - Terrence J. Sejnowski
Terrence J. Sejnowski is Francis Crick Professor, Director of the Computational Neurobiology Laboratory, and a Howard Hughes Medical Institute Investigator at the Salk Institute for Biological Studies and Professor of Biology at the University of California, San Diego.
L'auteur - John McWhirter
John McWhirter is Senior Fellow at QinetiQ Ltd., Malvern, Associate Professor at the Cardiff School of Engineering, and Honorary Visiting Professor at Queen's University, Belfast.
Sommaire
- Modeling the Mind: From Circuits to Systems
- Empirical Statistics and Stochastic Models for Visual Signals
- The Machine Cocktail Party Problem
- Sensor Adaptive Signal Processing of Biological Nanotubes (Ion Channels) at Macroscopic and Nano Scales
- Spin Diffusion: A New Perspective in Magnetic Resonance Imaging
- What Makes a Dynamical System Computationally Powerful?
- A Variational Principle for Graphical Models
- Modeling Large Dynamical Systems with Dynamical Consistent Neural Networks
- Diversity in Communication: From Source Coding to Wireless Networks
- Designing Patterns for Easy Recognition: Information Transmission with Low-Density Parity-Check Codes
- Turbo Processing
- Blind Signal Processing Based on Data Geometric Properties
- Game-Theoretic Learning
- Learning Observable Operator Models via the Efficient Sharpening Algorithm
Caractéristiques techniques
PAPIER | |
Éditeur(s) | The MIT Press |
Auteur(s) | Simon Haykin, José C. Principe, Terrence J. Sejnowski, John McWhirter |
Parution | 04/12/2006 |
Nb. de pages | 540 |
Format | 21,5 x 26,5 |
Couverture | Relié |
Poids | 1280g |
Intérieur | Noir et Blanc |
EAN13 | 9780262083485 |
ISBN13 | 978-0-262-08348-5 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Informatique Développement d'applications Algorithmique et informatique appliquée Réseaux de neurones
- Informatique Développement d'applications Algorithmique et informatique appliquée Reconnaissance des formes
- Sciences Mathématiques Mathématiques appliquées Ondelettes
- Sciences Mathématiques Mathématiques appliquées Traitement du signal
- Sciences Techniques Intelligence artificielle I.A. appliquée