Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Period Mappings and Period Domains
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Period Mappings and Period Domains

Period Mappings and Period Domains

James carlson (author)|stefan müller-stach (author)|chris peters (author)

590 pages, parution le 23/08/2017

Résumé

James Carlson is Professor Emeritus at the University of Utah. From 2003 to 2012, he was president of the Clay Mathematics Institute, New Hampshire. Most of Carlson's research is in the area of Hodge theory.Previous edition: 2003.Part I. Basic Theory: 1. Introductory examples; 2. Cohomology of compact Kähler manifolds; 3. Holomorphic invariants and cohomology; 4. Cohomology of manifolds varying in a family; 5. Period maps looked at infinitesimally; Part II. Algebraic Methods: 6. Spectral sequences; 7. Koszul complexes and some applications; 8. Torelli theorems; 9. Normal functions and their applications; 10. Applications to algebraic cycles: Nori's theorem; Part III. Differential Geometric Aspects: 11. Further differential geometric tools; 12. Structure of period domains; 13. Curvature estimates and applications; 14. Harmonic maps and Hodge theory; Part IV. Additional Topics: 15. Hodge structures and algebraic groups; 16. Mumford-Tate domains; 17. Hodge loci and special subvarieties; Appendix A. Projective varieties and complex manifolds; Appendix B. Homology and cohomology; Appendix C. Vector bundles and Chern classes; Appendix D. Lie groups and algebraic groups; References; Index.This up-to-date introduction to Griffiths' theory of period maps and period domains focusses on algebraic, group-theoretic and differential geometric aspects. Starting with an explanation of Griffiths' basic theory, the authors go on to introduce spectral sequences and Koszul complexes that are used to derive results about cycles on higher-dimensional algebraic varieties such as the Noether-Lefschetz theorem and Nori's theorem. They explain differential geometric methods, leading up to proofs of Arakelov-type theorems, the theorem of the fixed part and the rigidity theorem. They also use Higgs bundles and harmonic maps to prove the striking result that not all compact quotients of period domains are Kähler. This thoroughly revised second edition includes a new third part covering important recent developments, in which the group-theoretic approach to Hodge structures is explained, leading to Mumford-Tate groups and their associated domains, the Mumford-Tate varieties and generalizations of Shimura varieties.Second editionIllustrationsQA564Geometry, Algebraic.|Torelli theorem.1EnglandCambridgeJames Carlson, Stefan Müller-Stach, Chris Peters.Review of previous edition: 'This book, dedicated to Philip Griffiths, provides an excellent introduction to the study of periods of algebraic integrals and their applications to complex algebraic geometry. In addition to the clarity of the presentation and the wealth of information, this book also contains numerous problems which render it ideal for use in a graduate course in Hodge theory.' Mathematical Reviews

Review of previous edition: '... generally more informal and differential-geometric in its approach, which will appeal to many readers ... the book is a useful introduction to Carlos Simpson's deep analysis of the fundamental groups of compact Kähler manifolds using harmonic maps and Higgs bundles.' Burt Totaro, University of Cambridge
Cambridge Studies in Advanced Mathematics

Caractéristiques techniques

  PAPIER
Éditeur(s) Cambridge University Press
Auteur(s) James carlson (author)|stefan müller-stach (author)|chris peters (author)
Parution 23/08/2017
Nb. de pages 590
Format 152 x 228
Poids 943g
EAN13 9781316639566

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription