Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Skew-Tolerant Circuit Design
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Skew-Tolerant Circuit Design

Skew-Tolerant Circuit Design

David Harris

300 pages, parution le 25/05/2000

Résumé

As advances in technology and circuit design boost operating frequencies of microprocessors, DSPs and other fast chips, new design challenges continue to emerge. One of the major performance limitations in today's chip designs is clock skew, the uncertainty in arrival times between a pair of clocks. Increasing clock frequencies are forcing many engineers to rethink their timing budgets and to use skew-tolerant circuit techniques for both domino and static circuits. While senior designers have long developed their own techniques for reducing the sequencing overhead of domino circuits, this knowledge has routinely been protected as trade secret and has rarely been shared. Skew-Tolerant Circuit Design presents a systematic way of achieving the same goal and puts it in the hands of all designers.

This book clearly presents skew-tolerant techniques and shows how they address the challenges of clocking, latching, and clock skew. It provides the practicing circuit designer with a clearly detailed tutorial and an insightful summary of the most recent literature on these critical clock skew issues.

Features:

  • Synthesizes the most recent advances in skew-tolerant design in one cohesive tutorial
  • Provides incisive instruction and advice punctuated by humorous illustrations
  • Includes exercises to test understanding of key concepts and solutions to selected exercises

Contents

CHAPTER 1 - SKEW-TOLERANT CIRCUIT DESIGN

1.1 Overhead in Flip-Flop Systems
1.2 Throughput and Latency Trends
1.2.1 Impact of Overhead on Throughput and Latency
1.2.2 Historical Trends
1.2.3 Future Predictions
1.2.4 Conclusions
1.3 Skew-Tolerant Static Circuits
1.4 Domino Circuits
1.4.1 Domino Gate Operation
1.4.2 Traditional Domino Clocking
1.4.3 Skew-Tolerant domino
1.5 Case Studies
1.5.1 Sequencing Overhead in a Static ASIC
1.5.2 Sequencing Overhead in the Alpha 21164
1.5.3 Timing Analysis with Clock Skew
1.6 A Look Ahead

CHAPTER 2 - STATIC CIRCUITS

2.1 Preliminaries
2.1.1 Purpose of Memory Elements
2.1.2 Terminology
2.2 Static Memory Elements
2.2.1 Timing Diagrams
2.2.2 Sequencing Overhead
2.2.3 Time Borrowing
2.2.4 Min-Delay
2.3 Memory Element Design
2.3.1 Transparent Latches
2.3.2 Pulsed Latches
2.3.3 Flip-Flops
2.4 Historical Perspective
2.5 Summary

CHAPTER 3 - DOMINO CIRCUITS

3.1 Skew-Tolerant Domino Timing
3.1.1 General Timing Constraints
3.1.2 Clock Domains
3.1.3 50% Duty Cycle
3.1.4 Single Gate per Phase
3.1.5 Min-Delay Constraints
3.1.6 Recommendations and Design Issues
3.2 Domino Gate Design
3.2.1 Monotonicity and Dual-Rail Domino
3.2.2 Footed and Unfooted Gates
3.2.3 Keeper Design
3.2.4 Robustness Issues
3.3 Historical Perspective
3.4 Summary

CHAPTER 4 - CIRCUIT METHODOLOGY

4.1 Static/Domino Interface
4.1.1 Latch Placement
4.1.2 Static to Domino Interface
4.1.3 Domino to Static Interface
4.1.4 Timing Types
4.1.5 Qualified Clocks
4.1.6 Min-Delay Checks
4.2 Clocked Element Design
4.2.1 Latch Design
4.2.2 Domino Gate Design
4.2.3 Special Structures
4.3 Testability
4.3.1 Static Logic
4.3.2 Domino Logic
4.4 Historical Perspective
4.5 Summary

CHAPTER 5 - CLOCKING

5.1 Clock Waveforms
5.1.1 Physical Clock Definitions
5.1.2 Clock Skew
5.1.3 Clock Domains
5.2 Skew-Tolerant Domino Clock Generation
5.2.1 Delay Line Clock Generators
5.2.2 Feedback Clock Generators
5.2.3 Putting It All Together
5.3 Summary

CHAPTER 6 - TIMING ANALYSIS

6.1 Timing Analysis without Clock Skew
6.2 Timing Analysis with Clock Skew
6.2.1 Single Skew Formation
6.2.2 Exact Skew Formation
6.2.3 Clock Domain Formulation
6.2.4 Example
6.3 Extension to Flip-Flops and Domino Circuits
6.3.1 Flip-Flops
6.3.2 Domino Gates
6.4 Min-Delay
6.5 A Verification Algorithm
6.6 Results
6.7 Historical Perspective
6.8 Summary
6.8.1 Skewless Formulation
6.8.2 Single Skew Formulation
6.8.3 Exact Formulation
6.8.4 Clock Domain Formulation
6.9 Appendix: Timing Constraints

CHAPTER 7 - CONCLUSIONS

BIBLIOGRAPHY

L'auteur - David Harris

David Harris is currently an Assistant Professor of Engineering at Harvey Mudd College. He received his Ph.D. in 1999 from Stanford University on skew-tolerant circuit design. Since receiving his M. Eng. from MIT in 1994, he has consulted and taught in the field of high-speed CMOS circuit design at Sun Microsystems, Intel Corporation, HAL Computer, and Evans & Sutherland. In addition, he has taught circuit design at the UC Berkeley Extension and Stanford University.

Caractéristiques techniques

  PAPIER
Éditeur(s) Morgan Kaufmann
Auteur(s) David Harris
Parution 25/05/2000
Nb. de pages 300
Format 18,7 x 23,3
Couverture Broché
Poids 514g
Intérieur Noir et Blanc
EAN13 9781558606364

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription