Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
A Mathematical Introduction to Compressive Sensing
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

A Mathematical Introduction to Compressive Sensing

A Mathematical Introduction to Compressive Sensing

Simon / Rauhut Foucart - Collection Yellow Sale 2023

625 pages, parution le 17/08/2015

Résumé

At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.

At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians.

A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.

1 An Invitation to Compressive Sensing.- 2 Sparse Solutions of Underdetermined Systems.- 3 Basic Algorithms.- 4 Basis Pursuit.- 5 Coherence.- 6 Restricted Isometry Property.- 7 Basic Tools from Probability Theory.- 8 Advanced Tools from Probability Theory.- 9 Sparse Recovery with Random Matrices.- 10 Gelfand Widths of l 1-Balls.- 11 Instance Optimality and Quotient Property.- 12 Random Sampling in Bounded Orthonormal Systems.- 13 Lossless Expanders in Compressive Sensing.- 14 Recovery of Random Signals using Deterministic Matrices.- 15 Algorithms for l 1-Minimization.- Appendix A Matrix Analysis.- Appendix B Convex Analysis.- Appendix C Miscellanea.- List of Symbols.- References

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Simon / Rauhut Foucart
Collection Yellow Sale 2023
Parution 17/08/2015
Nb. de pages 625
EAN13 9781493900633

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription