
Adaptive Agents and Multi-Agents Systems
Adaptation and Multi-Agent Learning
Eduardo Alonso, Daniel Kudenko, Dimitar Kazakov
Résumé
Adaptive Agents and Multi-Agent Systems is an emerging and exciting interdisciplinary area of research and development involving artificial intelligence, computer science, software engineering, and developmental biology, as well as cognitive and social science.
This book surveys the state of the art in this emerging field by drawing together thoroughly selected reviewed papers from two related workshops; as well as papers by leading researchers specifically solicited for this book. The articles are organized into topical sections on
- learning, cooperation, and communication
- emergence and evolution in multi-agent systems
- theoretical foundations of adaptive agents
Contents
- Learning, Co-operation, and Communication
- Cooperative Multiagent Learning
- Reinforcement Learning Approaches to Coordination in
- Cooperative Multi-agent
- Cooperative Learning Using Advice Exchange
- Environmental Risk, Cooperation, and Communication Complexity
- Multiagent Learning for Open Systems: A Study in Opponent
- Classification
- Situated Cognition and the Role of Multi-agent Models
- in Explaining Language Structure
- Emergence and Evolution in Multi-agent Systems
- Adapting Populations of Agents
- The Evolution of Communication Systems by Adaptive Agents
- An Agent Architecture to Design Self-Organizing Collectives:
- Principles and Application
- Evolving Preferences among Emergent Groups of Agents
- Structuring Agents for Adaptation
- Stochastic Simulation of Inherited Kinship-Driven Altruism
- Theoretical Foundations of Adaptive Agents
- Learning in Multiagent Systems: An Introduction from a
- Game-Theoretic Perspective
- The Implications of Philosophical Foundations for Knowledge 22.
- Representation and Learning in Agents
- Using Cognition and Learning to Improve Agents' Reactions
- TTree: Tree-Based State Generalization with Temporally Abstract
- Actions
- Using Landscape Theory to Measure Learning Difficulty
- for Adaptive Agents
- Relational Reinforcement Learning for Agents in Worlds with Objects 29.
- Author Index
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Eduardo Alonso, Daniel Kudenko, Dimitar Kazakov |
Parution | 12/06/2003 |
Nb. de pages | 322 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 515g |
Intérieur | Noir et Blanc |
EAN13 | 9783540400684 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Informatique Développement d'applications Algorithmique et informatique appliquée Intelligence artificielle
- Sciences Techniques Robotique
- Sciences Techniques Intelligence artificielle I.A. appliquée
- Sciences Techniques Intelligence artificielle Systèmes experts
- Sciences Techniques Intelligence artificielle Réseaux de neurones
- Sciences Techniques Automatique