
Algebraic $\overline {\mathbb {Q}}$-Groups as Abstract Groups
Olivier Frecon
Résumé
For $K$ of characteristic zero and $G$ a given connected affine algebraic $\overline{\mathbb Q}$-group, the main theorem describes all the affine algebraic $\overline{\mathbb Q} $-groups $H$ such that the groups $H(K)$ and $G(K)$ are isomorphic as abstract groups. In the same time, it is shown that for any two connected algebraic $\overline{\mathbb Q} $-groups $G$ and $H$, the elementary equivalence of the pure groups $G(K)$ and $H(K)$ implies that they are abstractly isomorphic.
In the final section, the author applies his results to characterize the connected algebraic groups, all of whose abstract automorphisms are standard, when $K$ is either $\overline {\mathbb Q}$ or of positive characteristic. In characteristic zero, a fairly general criterion is exhibited.
- Introduction
- Background material
- Expanded pure groups
- Unipotent groups over $\overline{\mathbb Q} $ and definable linearity
- Definably affine groups
- Tori in expanded pure groups
- The definably linear quotients of an $ACF$-group
- The group $D_G$ and the Main Theorem for $K=\overline{\mathbb Q} $
- The Main Theorem for $K eq \overline{\mathbb Q}$
- Bi-interpretability and standard isomorphisms
- Acknowledgements
- Bibliography
- Index of notations
- Index
-
Caractéristiques techniques
PAPIER | |
Éditeur(s) | American mathematical society |
Auteur(s) | Olivier Frecon |
Parution | 29/08/2018 |
Nb. de pages | 99 |
EAN13 | 9781470429232 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse