Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Analysis and Approximation of Rare Events: Representations and Weak Convergence Methods
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Analysis and Approximation of Rare Events: Representations and Weak Convergence Methods

Analysis and Approximation of Rare Events: Representations and Weak Convergence Methods

Amarjit / Dupuis Budhiraja

574 pages, parution le 10/08/2019

Résumé

This book presents broadly applicable methods for the large deviation and moderate deviation analysis of discrete and continuous time stochastic systems. By characterizing a large deviation principle in terms of Laplace asymptotics, one converts the proof of large deviation limits into the convergence of variational representations.

This book presents broadly applicable methods for the large deviation and moderate deviation analysis of discrete and continuous time stochastic systems. A feature of the book is the systematic use of variational representations for quantities of interest such as normalized logarithms of probabilities and expected values. By characterizing a large deviation principle in terms of Laplace asymptotics, one converts the proof of large deviation limits into the convergence of variational representations. These features are illustrated though their application to a broad range of discrete and continuous time models, including stochastic partial differential equations, processes with discontinuous statistics, occupancy models, and many others. The tools used in the large deviation analysis also turn out to be useful in understanding Monte Carlo schemes for the numerical approximation of the same probabilities and expected values. This connection is illustrated through the design and analysis of importance sampling and splitting schemes for rare event estimation. The book assumes a solid background in weak convergence of probability measures and stochastic analysis, and is suitable for advanced graduate students, postdocs and researchers.


Preliminaries and elementary examples.- Discrete time processes.- Continuous time processes.- Monte Carlo approximation.

Amarjit Budhiraja is a Professor of Statistics and Operations Research at the University of North Carolina at Chapel Hill. He is a Fellow of the IMS. His research interests include stochastic analysis, the theory of large deviations, stochastic networks and stochastic nonlinear filtering.
Paul Dupuis is the IBM Professor of Applied Mathematics at Brown University and a Fellow of the AMS, SIAM and IMS. His research interests include stochastic control, the theory of large deviations and numerical methods.

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Amarjit / Dupuis Budhiraja
Parution 10/08/2019
Nb. de pages 574
EAN13 9781493995776

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription