Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Analyzing Dependent Data with Vine Copulas: A Practical Guide With R
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Analyzing Dependent Data with Vine Copulas: A Practical Guide With R

Analyzing Dependent Data with Vine Copulas: A Practical Guide With R

Claudia Czado

242 pages, parution le 14/05/2019

Résumé

This textbook provides a step-by-step introduction to the class of vine copulas, their statistical inference and applications.

This textbook provides a step-by-step introduction to the class of vine copulas, their statistical inference and applications. It focuses on statistical estimation and selection methods for vine copulas in data applications. These flexible copula models can successfully accommodate any form of tail dependence and are vital to many applications in finance, insurance, hydrology, marketing, engineering, chemistry, aviation, climatology and health.

The book explains the pair-copula construction principles underlying these statistical models and discusses how to perform model selection and inference. It also derives simulation algorithms and presents real-world examples to illustrate the methodological concepts. The book includes numerous exercises that facilitate and deepen readers' understanding, and demonstrates how the R package VineCopula can be used to explore and build statistical dependence models from scratch. In closing, the book provides insights into recent developments and open research questions in vine copula based modeling.

The book is intended for students as well as statisticians, data analysts and any other quantitatively oriented researchers who are new to the field of vine copulas. Accordingly, it provides the necessary background in multivariate statistics and copula theory for exploratory data tools, so that readers only need a basic grasp of statistics and probability.


Preface.- Multivariate Distributions and Copulas.- Dependence Measures.- Bivariate Copula Classes, Their Visualization and Estimation.- Pair Copula Decompositions and Constructions.- Regular Vines.- Simulating Regular Vine Copulas and Distributions.- Parameter Estimation in Regular Vine Copulas.- Selection of Regular Vine Copula Models.- Comparing Regular Vine Copula Models.- Case Study: Dependence Among German DAX Stocks.- Recent Developments in Vine Copula Based Modeling.- Indices.

Claudia Czado is an Associate Professor of Applied Mathematical Statistics at the Technical University of Munich, Germany. Her research interests are in the dependence modeling of complex data structures, copula based quantile regression, generalized linear models and computational Bayesian methods, and the applications of these methods. She holds a Ph.D. in Operations Research and Industrial Engineering from Cornell University, USA.

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Claudia Czado
Parution 14/05/2019
Nb. de pages 242
EAN13 9783030137847

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription