Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Basic Number Theory
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Basic Number Theory

Basic Number Theory

Andre Weil

316 pages, parution le 14/02/1995

Résumé

From the reviews: "L.R. Shafarevich showed me the first edition [...] and said that this book will be from now on the book about class field theory. In fact it is by far the most complete treatment of the main theorems of algebraic number theory, including function fields over finite constant fields, that appeared in book form."

From the reviews: "L.R. Shafarevich showed me the first edition [...] and said that this book will be from now on the book about class field theory. In fact it is by far the most complete treatment of the main theorems of algebraic number theory, including function fields over finite constant fields, that appeared in book form." Zentralblatt MATH

I. Elementary Theory.- I. Locally compact fields.- 1. Finite fields.- 2. The module in a locally compact field.- 3. Classification of locally compact fields.- 4. Structure of p-fields.- II. Lattices and duality over local fields.- 1. Norms.- 2. Lattices.- 3. Multiplicative structure of local fields.- 4. Lattices over R.- 5. Duality over local fields.- III. Places of A-fields.- 1. A-fields and their completions.- 2. Tensor-products of commutative fields.- 3. Traces and norms.- 4. Tensor-products of A-fields and local fields.- IV. Adeles.- 1. Adeles of A-fields.- 2. The main theorems.- 3. Ideles.- 4. Ideles of A-fields.- V. Algebraic number-fields.- 1. Orders in algebras over Q.- 2. Lattices over algebraic number-fields.- 3. Ideals.- 4. Fundamental sets.- VI. The theorem of Riemann-Roch.- VII. Zeta-functions of A-fields.- 1. Convergence of Euler products.- 2. Fourier transforms and standard functions.- 3. Quasicharacters.- 4. Quasicharacters of A-fields.- 5. The functional equation.- 6. The Dedekind zeta-function.- 7. L-functions.- 8. The coefficients of the L-series.- VIII. Traces and norms.- 1. Traces and norms in local fields.- 2. Calculation of the different.- 3. Ramification theory.- 4. Traces and norms in A-fields.- 5. Splitting places in separable extensions.- 6. An application to inseparable extensions.- II. Classfield Theory.- IX. Simple algebras.- 1. Structure of simple algebras.- 2. The representations of a simple algebra.- 3. Factor-sets and the Brauer group.- 4. Cyclic factor-sets.- 5. Special cyclic factor-sets.- X. Simple algebras over local fields.- 1. Orders and lattices.- 2. Traces and norms.- 3. Computation of some integrals.- XI. Simple algebras over A-fields.- 1. Ramification.- 2. The zeta-function of a simple algebra.- 3. Norms in simple algebras.- 4. Simple algebras over algebraic number-fields.- XII. Local classfield theory.- 1. The formalism of classfield theory.- 2. The Brauer group of a local field.- 3. The canonical morphism.- 4. Ramification of abelian extensions.- 5. The transfer.- XIII. Global classfield theory.- 1. The canonical pairing.- 2. An elementary lemma.- 3. Hasse's "law of reciprocity".- 4. Classfield theory for Q.- 5. The Hilbert symbol.- 6. The Brauer group of an A-field.- 7. The Hilbert p-symbol.- 8. The kernel of the canonical morphism.- 9. The main theorems.- 10. Local behavior of abelian extensions.- 11. "Classical" classfield theory.- 12. "Coronidis loco".- Notes to the text.- Appendix I. The transfer theorem.- Appendix III. Shafarevitch's theorem.- Appendix IV. The Herbrand distribution.- Index of definitions.

Biography of Andre Weil

Andre Weil was born on May 6, 1906 in Paris. After studying mathematics at the Ecole Normale Superieure and receiving a doctoral degree from the University of Paris in 1928, he held professorial positions in India, France, the United States and Brazil before being appointed to the Institute for Advanced Study, Princeton in 1958, where he remained until he died on August 6, 1998.

Andre Weil's work laid the foundation for abstract algebraic geometry and the modern theory of abelian varieties. A great deal of his work was directed towards establishing the links between number theory and algebraic geometry and devising modern methods in analytic number theory. Weil was one of the founders, around 1934, of the group that published, under the collective name of N. Bourbaki, the highly influential multi-volume treatise Elements de mathematique .

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Andre Weil
Parution 14/02/1995
Nb. de pages 316
EAN13 9783540586555

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription