Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Bayesian Hierarchical Models: With Applications Using R, Second Edition
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Bayesian Hierarchical Models: With Applications Using R, Second Edition

Bayesian Hierarchical Models: With Applications Using R, Second Edition

Peter D. Congdon

580 pages, parution le 01/10/2019

Résumé

An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods.

The new edition is a revision of the book Applied Bayesian Hierarchical Methods . It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples.

The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities.

Features:

  • Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling
  • Includes many real data examples to illustrate different modelling topics
  • R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation
  • Software options and coding principles are introduced in new chapter on computing
  • Programs and data sets available on the book's website

Contents

Preface...............................................................................................................................................xi

1. Bayesian Methods for Complex Data: Estimation and Inference ..................................1

1.1 Introduction....................................................................................................................1

1.2 Posterior Inference from Bayes Formula....................................................................2

1.3 MCMC Sampling in Relation to Monte Carlo Methods; Obtaining

Posterior Inferences.......................................................................................................3

1.4 Hierarchical Bayes Applications..................................................................................5

1.5 Metropolis Sampling.....................................................................................................8

1.6 Choice of Proposal Density..........................................................................................9

1.7 Obtaining Full Conditional Densities....................................................................... 10

1.8 Metropolis-Hastings Sampling................................................................................. 14

1.9 Gibbs Sampling............................................................................................................ 17

1.10 Hamiltonian Monte Carlo........................................................................................... 18

1.11 Latent Gaussian Models.............................................................................................. 19

1.12 Assessing Efficiency and Convergence; Ways of Improving Convergence.........20

1.12.1 Hierarchical Model Parameterisation to Improve Convergence.............22

1.12.2 Multiple Chain Methods................................................................................ 24

1.13 Choice of Prior Density...............................................................................................25

1.13.1 Including Evidence.........................................................................................26

1.13.2 Assessing Posterior Sensitivity; Robust Priors...........................................27

1.13.3 Problems in Prior Selection in Hierarchical Bayes Models......................29

1.14 Computational Notes.................................................................................................. 31

References................................................................................................................................ 37

2. Bayesian Analysis Options in R, and Coding for BUGS, JAGS, and Stan ................45

2.1 Introduction..................................................................................................................45

2.2 Coding in BUGS and for R Libraries Calling on BUGS .........................................46

2.3 Coding in JAGS and for R Libraries Calling on JAGS............................................47

2.4 Coding for rstan ..........................................................................................................49

2.4.1 Hamiltonian Monte Carlo.............................................................................49

2.4.2 Stan Program Syntax......................................................................................49

2.4.3 The Target + Representation......................................................................... 51

2.4.4 Custom Distributions through a Functions Block.....................................53

2.5 Miscellaneous Differences between Generic

Packages (BUGS, JAGS, and Stan)..............................................................................55

References................................................................................................................................56

3. Model Fit, Comparison, and Checking .............................................................................59

3.1 Introduction.................................................................................................................. 59

3.2 Formal Model Selection..............................................................................................59

3.2.1 Formal Methods: Approximating Marginal Likelihoods......................... 62

3.2.2 Importance and Bridge Sampling Estimates..............................................63

3.2.3 Path Sampling.................................................................................................65

3.2.4 Marginal Likelihood for Hierarchical Models........................................... 67

3.3 Effective Model Dimension and Penalised Fit Measures......................................71

3.3.1 Deviance Information Criterion (DIC).........................................................72

3.3.2 Alternative Complexity Measures................................................................73

3.3.3 WAIC and LOO-IC.........................................................................................75

3.3.4 The WBIC.........................................................................................................77

3.4 Variance Component Choice and Model Averaging..............................................80

3.4.1 Random Effects Selection..............................................................................80

3.5 Predictive Methods for Model Choice and Checking............................................ 87

3.5.1 Predictive Model Checking and Choice...................................................... 87

3.5.2 Posterior Predictive Model Checks..............................................................89

3.5.3 Mixed Predictive Checks............................................................................... 91

3.6 Computational Notes..................................................................................................95

References................................................................................................................................98

4. Borrowing Strength via Hierarchical Estimation ......................................................... 103

4.1 Introduction................................................................................................................ 103

4.2 Hierarchical Priors for Borrowing Strength Using Continuous Mixtures........ 105

4.3 The Normal-Normal Hierarchical Model and Its Applications.......................... 106

4.3.1 Meta-Regression............................................................................................ 110

4.4 Prior for Second Stage Variance............................................................................... 111

4.4.1 Non-Conjugate Priors................................................................................... 113

4.5 Multivariate Meta-Analysis...................................................................................... 116

4.6 Heterogeneity in Count Data: Hierarchical Poisson Models............................... 121

4.6.1 Non-Conjugate Poisson Mixing.................................................................. 124

4.7 Binomial and Multinomial Heterogeneity............................................................. 126

4.7.1 Non-Conjugate Priors for Binomial Mixing............................................. 128

4.7.2 Multinomial Mixtures.................................................................................. 130

4.7.3 Ecological Inference Using Mixture Models............................................ 131

4.8 Discrete Mixtures and Semiparametric Smoothing Methods............................ 134

4.8.1 Finite Mixtures of Parametric Densities.................................................... 135

4.8.2 Finite Mixtures of Standard Densities....................................................... 136

4.8.3 Inference in Mixture Models...................................................................... 137

4.8.4 Particular Types of Discrete Mixture Model............................................ 141

4.8.5 The Logistic-Normal Alternative to the Dirichlet Prior.......................... 142

4.9 Semiparametric Modelling via Dirichlet Process and Polya Tree Priors.......... 144

4.9.1 Specifying the Baseline Density................................................................. 146

4.9.2 Truncated Dirichlet Processes and Stick-Breaking Priors...................... 148

4.9.3 Polya Tree Priors........................................................................................... 149

4.10 Computational Notes................................................................................................ 154

References.............................................................................................................................. 156

5. Time Structured Priors ....................................................................................................... 165

5.1 Introduction................................................................................................................ 165

5.2 Modelling Temporal Structure: Autoregressive Models...................................... 166

5.2.1 Random Coefficient Autoregressive Models............................................ 168

5.2.2 Low Order Autoregressive Models............................................................ 169

5.2.3 Antedependence Models............................................................................. 170

5.3 State-Space Priors for Metric Data........................................................................... 172

5.3.1 Simple Signal Models................................................................................... 175

5.3.2 Sampling Schemes........................................................................................ 176

5.3.3 Basic Structural Model................................................................................. 178

5.3.4 Identification Questions............................................................................... 179

5.3.5 Nonlinear State-Space Models for Continuous Data............................... 184

5.4 Time Series for Discrete Responses; State-Space Priors and Alternatives......... 186

5.4.1 Other Approaches......................................................................................... 188

5.5 Stochastic Variances.................................................................................................. 193

5.6 Modelling Discontinuities in Time......................................................................... 197

5.7 Computational Notes................................................................................................ 202

References..............................................................................................................................206

6. Representing Spatial Dependence ................................................................................... 213

6.1 Introduction................................................................................................................ 213

6.2 Spatial Smoothing and Prediction for Area Data.................................................. 214

6.2.1 SAR Schemes................................................................................................. 216

6.3 Conditional Autoregressive Priors.......................................................................... 221

6.3.1 Linking Conditional and Joint Specifications...........................................222

6.3.2 Alternative Conditional Priors....................................................................223

6.3.3 ICAR(1) and Convolution Priors.................................................................226

6.4 Priors on Variances in Conditional Spatial Models..............................................227

6.4 Spatial Discontinuity and Robust Smoothing.......................................................229

6.5 Models for Point Processes.......................................................................................234

6.5.1 Covariance Functions................................................................................... 237

6.5.2 Sparse and Low Rank Approaches............................................................238

6.6 Discrete Convolution Models................................................................................... 241

6.7 Computational Notes................................................................................................ 245

References.............................................................................................................................. 246

7. Regression Techniques Using Hierarchical Priors .......................................................253

7.1 Introduction................................................................................................................253

7.2 Predictor Selection.....................................................................................................253

7.2.1 Predictor Selection........................................................................................254

7.2.2 Shrinkage Priors...........................................................................................256

7.3 Categorical Predictors and the Analysis of Variance........................................... 259

7.3.1 Testing Variance Components....................................................................260

7.4 Regression for Overdispersed Data........................................................................264

7.4.1 Overdispersed Poisson Regression............................................................264

7.4.2 Overdispersed Binomial and Multinomial Regression.......................... 267

7.5 Latent Scales for Binary and Categorical Data...................................................... 270

7.5.1 Augmentation for Ordinal Responses....................................................... 273

7.6 Heteroscedasticity and Regression Heterogeneity............................................... 276

7.6.1 Nonconstant Error Variances...................................................................... 276

7.6.2 Varying Regression Effects via Discrete Mixtures..................................277

7.6.3 Other Applications of Discrete Mixtures.................................................. 278

7.7 Time Series Regression: Correlated Errors and Time-Varying

Regression Effects...................................................................................................... 282

7.7.1 Time-Varying Regression Effects...............................................................283

7.8 Spatial Regression......................................................................................................288

7.8.1 Spatial Lag and Spatial Error Models........................................................288

7.8.2 Simultaneous Autoregressive Models.......................................................288

7.8.3 Conditional Autoregression........................................................................290

7.8.4 Spatially Varying Regression Effects: GWR and Bayesian SVC

Models............................................................................................................ 291

7.8.5 Bayesian Spatially Varying Coefficients.................................................... 292

7.8.6 Bayesian Spatial Predictor Selection Models............................................ 293

7.9 Adjusting for Selection Bias and Estimating Causal Effects............................... 296

7.9.1 Propensity Score Adjustment...................................................................... 296

7.9.2 Establishing Causal Effects: Mediation and Marginal Models..............299

7.9.3 Causal Path Sequences.................................................................................299

7.9.4 Marginal Structural Models........................................................................306

References..............................................................................................................................308

8. Bayesian Multilevel Models .............................................................................................. 317

8.1 Introduction................................................................................................................ 317

8.2 The Normal Linear Mixed Model for Hierarchical Data..................................... 318

8.2.1 The Lindley-Smith Model Format............................................................. 320

8.3 Discrete Responses: GLMM, Conjugate, and Augmented Data Models........... 322

8.3.1 Augmented Data Multilevel Models.......................................................... 324

8.3.2 Conjugate Cluster Effects............................................................................. 325

8.4 Crossed and Multiple Membership Random Effects........................................... 328

8.5 Robust Multilevel Models......................................................................................... 331

References..............................................................................................................................336

9. Factor Analysis, Structural Equation Models, and Multivariate Priors ................... 339

9.1 Introduction................................................................................................................ 339

9.2 Normal Linear Structural Equation and Factor Models......................................340

9.2.1 Forms of Model.............................................................................................342

9.2.2 Model Definition...........................................................................................343

9.2.3 Marginal and Complete Data Likelihoods, and MCMC Sampling.......345

9.3 Identifiability and Priors on Loadings....................................................................346

9.3.1 An Illustration of Identifiability Issues......................................................348

9.4 Multivariate Exponential Family Outcomes and Generalised Linear

Factor Models.............................................................................................................354

9.4.1 Multivariate Count Data..............................................................................355

9.4.2 Multivariate Binary Data and Item Response Models............................ 357

9.4.3 Latent Scale IRT Models............................................................................... 359

9.4.4 Categorical Data............................................................................................360

9.5 Robust Density Assumptions in Factor Models.................................................... 370

9.6 Multivariate Spatial Priors for Discrete Area Frameworks................................. 373

9.7 Spatial Factor Models................................................................................................ 379

9.8 Multivariate Time Series........................................................................................... 381

9.8.1 Multivariate Dynamic Linear Models....................................................... 381

9.8.2 Dynamic Factor Analysis............................................................................386

9.8.3 Multivariate Stochastic Volatility...............................................................388

9.9 Computational Notes................................................................................................ 396

References.............................................................................................................................. 397

10. Hierarchical Models for Longitudinal Data ..................................................................405

10.1 Introduction................................................................................................................405

10.2 General Linear Mixed Models for Longitudinal Data.........................................406

10.2.1 Centred or Non-Centred Priors..................................................................408

10.2.2 Priors on Unit Level Random Effects.........................................................409

10.2.3 Priors for Random Covariance Matrix and

Random Effect Selection.............................................................................. 411

10.2.4 Priors for Multiple Sources of Error Variation.......................................... 415

10.3 Temporal Correlation and Autocorrelated Residuals........................................... 418

10.3.1 Explicit Temporal Schemes for Errors....................................................... 419

10.4 Longitudinal Categorical Choice Data....................................................................423

10.5 Observation Driven Autocorrelation: Dynamic Longitudinal Models.............427

10.5.1 Dynamic Models for Discrete Data............................................................429

10.6 Robust Longitudinal Models: Heteroscedasticity, Generalised Error

Densities, and Discrete Mixtures............................................................................433

10.6.1 Robust Longitudinal Data Models: Discrete Mixture Models...............436

10.7 Multilevel, Multivariate, and Multiple Time Scale Longitudinal Data..............443

10.7.1 Latent Trait Longitudinal Models..............................................................445

10.7.2 Multiple Scale Longitudinal Data..............................................................446

10.8 Missing Data in Longitudinal Models.................................................................... 452

10.8.1 Forms of Missingness Regression (Selection Approach)........................454

10.8.2 Common Factor Models...............................................................................455

10.8.3 Missing Predictor Data................................................................................ 457

10.8.4 Pattern Mixture Models............................................................................... 459

References.............................................................................................................................. 462

11. Survival and Event History Models ................................................................................ 471

11.1 Introduction................................................................................................................ 471

11.2 Survival Analysis in Continuous Time..................................................................472

11.2.1 Counting Process Functions....................................................................... 474

11.2.2 Parametric Hazards...................................................................................... 475

11.2.3 Accelerated Hazards.................................................................................... 478

11.3 Semiparametric Hazards.......................................................................................... 481

11.3.1 Piecewise Exponential Priors......................................................................482

11.3.2 Cumulative Hazard Specifications.............................................................484

11.4 Including Frailty........................................................................................................488

11.4.1 Cure Rate Models..........................................................................................490

11.5 Discrete Time Hazard Models................................................................................. 494

11.5.1 Life Tables...................................................................................................... 496

11.6 Dependent Survival Times: Multivariate and Nested Survival Times..............502

11.7 Competing Risks........................................................................................................507

11.7.1 Modelling Frailty..........................................................................................509

11.8 Computational Notes................................................................................................ 514

References.............................................................................................................................. 519

12. Hierarchical Methods for Nonlinear and Quantile Regression ................................ 525

12.1 Introduction................................................................................................................ 525

12.2 Non-Parametric Basis Function Models for the Regression Mean..................... 526

12.2.1 Mixed Model Splines.................................................................................... 527

12.2.2 Basis Functions Other Than Truncated Polynomials.............................. 529

12.2.3 Model Selection............................................................................................. 532

12.3 Multivariate Basis Function Regression.................................................................536

12.4 Heteroscedasticity via Adaptive Non-Parametric Regression............................ 541

12.5 General Additive Methods.......................................................................................543

12.6 Non-Parametric Regression Methods for Longitudinal Analysis......................546

12.7 Quantile Regression.................................................................................................. 552

12.7.1 Non-Metric Responses.................................................................................554

12.8 Computational Notes................................................................................................560

References..............................................................................................................................560

Index ..............................................................................................................................................565

Peter Congdon is Research Professor in Quantitative Geography and Health Statistics at Queen Mary, University of London.

Caractéristiques techniques

  PAPIER
Éditeur(s) Taylor&francis
Auteur(s) Peter D. Congdon
Parution 01/10/2019
Nb. de pages 580
EAN13 9781498785754

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription