Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Bayesian Methods for Nonlinear Classification and Regression
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Bayesian Methods for Nonlinear Classification and Regression

Bayesian Methods for Nonlinear Classification and Regression

David G.T. Denison, Christopher C. Holmes, Bani K. Mallick, Adrian F.M. Smith

278 pages, parution le 03/05/2002

Résumé

Nonlinear Bayesian modelling is a relatively new field, but one that has seen a recent explosion of interest. Nonlinear models offer more flexibility than those with linear assumptions, and their implementation has now become much easier due to increases in computational power. Bayesian methods allow for the incorporation of prior information, allowing the user to make coherent inference. Bayesian Methods for Nonlinear Classification and Regression is the first book to bring together, in a consistent statistical framework, the ideas of nonlinear modelling and Bayesian methods.

  • Focuses on the problems of classification and regression using flexible, data-driven approaches.
  • Demonstrates how Bayesian ideas can be used to improve existing statistical methods.
  • Includes coverage of Bayesian additive models, decision trees, nearest-neighbour, wavelets, regression splines, and neural networks.
  • Emphasis is placed on sound implementation of nonlinear models.
  • Discusses medical, spatial, and economic applications.
  • Includes problems at the end of most of the chapters.
  • Supported by a web site featuring implementation code and data sets.
Primarily of interest to researchers of nonlinear statistical modelling, the book will also be suitable for graduate students of statistics. The book will benefit researchers involved in regression and classification modelling from electrical engineering, economics, machine learning and computer science.

Contents

  • Bayesian Modelling
  • Curve Fitting
  • Surface Fitting
  • Classification using Generalised Nonlinear Models
  • Bayesian Tree Models
  • Partition Models
  • Nearest-neighbour Models
  • Multiple Response Models
  • References
  • Probability Distributions
  • Inferential Processes

Caractéristiques techniques

  PAPIER
Éditeur(s) Wiley
Auteur(s) David G.T. Denison, Christopher C. Holmes, Bani K. Mallick, Adrian F.M. Smith
Parution 03/05/2002
Nb. de pages 278
Format 15,5 x 23,5
Couverture Relié
Poids 591g
Intérieur Noir et Blanc
EAN13 9780471490364

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription