Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Canard Cycles: From Birth to Transition
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Canard Cycles: From Birth to Transition

Canard Cycles: From Birth to Transition

Peter / Dumortier De Maesschalck

408 pages, parution le 07/08/2021

Résumé

This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields. The central question of controlling the limit cycles is addressed in detail and strong results are presented with complete proofs.
In particular, the book provides a detailed study of the structure of the transitions near the critical set of non-isolated singularities. This leads to precise results on the limit cycles and their bifurcations, including the so-called canard phenomenon and canard explosion. The book also provides a solid basis for the use of asymptotic techniques. It gives a clear understanding of notions like inner and outer solutions, describing their relation and precise structure.
The first part of the book provides a thorough introduction to slow-fast systems, suitable for graduate students. The second and third parts will be of interest to both pure mathematicians working on theoretical questions such as Hilbert's 16th problem, as well as to a wide range of applied mathematicians looking for a detailed understanding of two-scale models found in electrical circuits, population dynamics, ecological models, cellular (FitzHugh-Nagumo) models, epidemiological models, chemical reactions, mechanical oscillators with friction, climate models, and many other models with tipping points.
Part I Basic Notions.- 1 Basic Definitions and Notions.- 2 Local Invariants and Normal Forms.- 3 The Slow Vector Field.- 4 Slow-Fast Cycles.- 5 The Slow Divergence Integral.- 6 Breaking Mechanisms.- 7 Overview of Known Results.- Part II Technical Tools.- 8 Blow-Up of Contact Points.- 9 Center Manifolds.- 10 Normal Forms.- 11 Smooth Functions on Admissible Monomials and More.- 12 Local Transition Maps.- Part III Results and Open Problems.- 13 Ordinary Canard Cycles.- 14 Transitory Canard Cycles with Slow-Fast Passage Through a Jump Point.- 15 Transitory Canard Cycles with Fast-Fast Passage Through a Jump Point.- 16 Outlook and Open Problems.- Index.- References. Peter De Maesschalck , born in 1975, has been at Hasselt University, Belgium, for much of his career. His research focuses on slow-fast systems in low dimensional systems both from a qualitative point of view and from the point of view of asymptotic expansions. Part of his research is inspired by theoretical questions such as Hilbert's 16th problem on limit cycles of polynomial systems, another part is motivated by applications of slow-fast systems in, e.g., neurological models.

Freddy Dumortier , born in 1947, emeritus professor at Hasselt University, is former president of the Belgian Mathematical Society and is currently permanent secretary of the Royal Flemish Academy of Belgium for Science and the Arts. He is the author of many papers and his main results deal with singularities and their unfolding, bifurcation theory, Lienard equations, Hilbert's 16th problem, slow-fast systems and the wave speed in reaction-diffusion equations.

Robert Roussarie , born in 1944, is emeritus professor of the University of Bourgogne-Franche Comte. After a career at the CNRS he was professor at the Institut de Mathematique de Bourgogne. He worked on the theory of foliations, of singularities in differential geometry, bifurcations of vector fields and finally slow-fast systems. He also contributed to applied research on ferro-resonance in electrical networks, systems of ecological populations, systems in control theory and free interface problems in combustion theory.

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Peter / Dumortier De Maesschalck
Parution 07/08/2021
Nb. de pages 408
EAN13 9783030792329

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription