
Chapter Zero
Fundamental Notions of Abstract Mathematics
Résumé
Chapter Zero is designed for the undergraduate level Introduction to Advanced Mathematics course. Written in a modified R.L. Moore fashion, it offers a unique approach in which students construct their own understandings. However, while students are called upon to write their own proofs, they are also encouraged to work in groups. There are few finished proofs contained in the text, but the author offers 'proof sketches' and helpful technique tips to help students as they develop their proof writing skills. This book is most successful in a small, seminar style class.
Features- NEW! Coverage of Isomorphisms and Graph Theory. Exercise sections have been improved by smoothing out the grade of difficulty.
- Proof Sketches. Woven throughout the early chapters of the text, these sketches assist students with proof techniques.
- Logic is used as a tool for analyzing the content of mathematical assertions and for constructing valid mathematical proofs.
- Rigorous axiomatic treatment of set theory is introduced in Appendices A and B (which are written in the same style as the text's chapters.)
0. Introduction an Essay
Deciding What to Assume.
What Is Needed to Do Mathematics?
Chapter Zero
1. Logic.
Thought Experiment: True or False.
Statements and Predicates.
Quantification.
Mathematical Statements.
Mathematical Implication.
Direct Proofs.
Compound Statements and Truth Tables.
Learning from Truth Tables.
Tautologies.
What About the Converse?
Equivalence and Rephrasing.
Negating Statements.
Existence Theorems.
Uniqueness Theorems.
Examples and Counter Examples.
Direct Proof.
Proof by Contrapositive.
Proof by Contradiction.
Proving Theorems: What Now?
Problems.
Questions to Ponder
2. Sets.
Subsets.
Set Operations.
The Algebra of Sets.
The Power Set.
Russell's Paradox.
Problems.
Questions to Ponder.
3. Induction.
Using Induction.
Complete Induction.
Questions to Ponder.
4. Relations.
Orderings.
Equivalence Relations.
Graphs.
Coloring Maps.
Problems.
Questions to Ponder.
5. Functions.
Composition and Inverses.
Images and Inverse Images.
Order Isomorphisms.
Sequences.
Sequences with Special Properties.
Subsequences.
Constructing Subsequences Recursively.
Binary Operations.
Problems.
Questions to Ponder
6. Elementary Number Theory.
Divisibility in the Integers.
The Euclidean Algorithm.
Relatively Prime Integers.
Prime Factorization.
Congruence Modulo n.
Divisibility Modulo n.
Problems.
Questions to Ponder.
7. Cardinality.
Infinite Sets.
Countable Sets.
Beyond Countability.
Comparing Cardinalities.
The Continuum Hypothesis.
Problems.
Questions to Ponder.
8. The Real Numbers.
Arithmetic.
Order.
The Least Upper Bound Axiom.
Sequence Convergence in R.
Problems.
Questions to Ponder.
A. Axiomatic Set Theory.
Elementary Axioms.
The Axiom of Infinity.
Axioms of Choice and Substitution.
B. Constructing R.
From N to Z.
From Z to Q.
From Q to R.
Index.
L'auteur - Carol Schumacher
Carol Schumacher, Kenyon College
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Addison Wesley |
Auteur(s) | Carol Schumacher |
Parution | 28/05/2002 |
Édition | 2eme édition |
Nb. de pages | 232 |
Format | 17 x 24 |
Couverture | Relié |
Poids | 537g |
Intérieur | Noir et Blanc |
EAN13 | 9780201437249 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Informatique Développement d'applications Algorithmique et informatique appliquée Algorithmes génétiques
- Informatique Développement d'applications Algorithmique et informatique appliquée Graphes
- Sciences Mathématiques Mathématiques par matières Algèbre Cours
- Sciences Mathématiques Mathématiques par matières Algèbre Exercices
- Sciences Mathématiques Mathématiques par matières Logique
- Sciences Mathématiques Mathématiques par matières Logique Algèbre de Boole
- Sciences Mathématiques Mathématiques par matières Théorie des ensembles
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques