
Classical Mathematical Logic
The Semantic Foundations of Logic
Résumé
In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not only of arithmetic, but also of group theory, field theory, and linear orderings. These lead to the formalization of the real numbers and Euclidean plane geometry. The scope and limitations of modern logic are made clear in these formalizations.
The book provides detailed explanations of all proofs and the insights behind the proofs, as well as detailed and nontrivial examples and problems. The book has more than 550 exercises. It can be used in advanced undergraduate or graduate courses and for self-study and reference.
Classical Mathematical Logic presents a unified treatment of material that until now has been available only by consulting many different books and research articles, written with various notation systems and axiomatizations.
L'auteur - Richard L. Epstein
Richard L. Epstein received his doctorate in mathematics from the University of California, Berkeley. He is the author of eleven books, including two others in the series The Semantic Foundations of Logic (Propositional Logics and Predicate Logic), Five Ways of Saying "Therefore," Critical Thinking, and, with Walter Carnielli, Computability. He is head of the Advanced Reasoning Forum in Socorro, New Mexico.
Sommaire
- Preface
- Acknowledgments
- Introduction
- Classical Propositional Logic
- Abstracting and Axiomatizing Classical Propositional Logic
- The Language of Predicate Logic
- The Semantics of Classical Predicate Logic
- Substitutions and Equivalences
- Equality
- Examples of Formalization
- Functions
- The Abstraction of Models
- Axiomatizing Classical Predicate Logic
- The Number of Objects in the Universe of a Model
- Formalizing Group Theory
- Linear Orderings
- Second-Order Classical Predicate Logic
- The Natural Numbers
- The Integers and Rationals
- The Real Numbers
- One-Dimensional Geometry
- Two-Dimensional Euclidean Geometry
- Translations within Classical Predicate Logic
- Classical Predicate Logic Logic with Non-Referring Names
- The Liar Paradox
- On Mathematical Logic and Mathematics
- Appendix: The Completeness of Classical Predicate Logic Proved by Gödel's Method
- Summary of Formal Systems
- Bibliography
- Index of Notation
- Index
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Princeton University Press |
Auteur(s) | Richard L. Epstein |
Parution | 27/06/2006 |
Nb. de pages | 522 |
Format | 18 x 26 |
Couverture | Relié |
Poids | 1111g |
Intérieur | Noir et Blanc |
EAN13 | 9780691123004 |
ISBN13 | 978-0-691-12300-4 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Informatique Développement d'applications Techniques de programmation Logique
- Sciences Mathématiques Mathématiques par matières Algèbre Cours
- Sciences Mathématiques Mathématiques par matières Algèbre Exercices
- Sciences Mathématiques Mathématiques par matières Logique
- Sciences Mathématiques Mathématiques par matières Théorie des ensembles
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques