Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Cohomological theory of dynamical zeta functions
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Cohomological theory of dynamical zeta functions

Cohomological theory of dynamical zeta functions

Andreas Juhl

406 pages, parution le 04/12/2001

Résumé

The periodic orbits of the geodesic flow of compact locally symmetric spaces of negative curvature give rise to meromorphic zeta functions (generalized Selberg zeta functions, Ruelle zeta functions).

The book treats various aspects of the idea to understand the analytical properties of these zeta functions on the basis of appropriate analogs of the Lefschetz fixed point formula in which the periodic orbits of the flow take the place of the fixed points. According to geometric quantization the Anosov foliations of the sphere bundle provide a natural source for the definition of the cohomological data in the Lefschetz formula. The Lefschetz formula method can be considered as a link between the automorphic approach (Selberg trace formula) and Ruelle's approach (transfer operators). It yields a uniform cohomological characterization of the zeros and poles of the zeta functions and a new understanding of the functional equations from an index theoretical point of view. The divisors of the Selberg zeta functi lso admit characterizations in terms of harmonic currents on the sphere bundle which represent the cohomology classes in the Lefschetz formulas in the sense of a Hodge theory. The concept of harmonic currents to be used for that purpose is introduced here for the first time. Harmonic currents for the geodesic flow of a noncompact hyperbolic space with a compact convex core generalize the Patterson-Sullivan measure on the limit set and are responsible for the zeros and poles of the corresponding zeta function.

The book describes the present state of the research in a new field on the cutting edge of global analysis, harmonic analysis and dynamical systems. It should be appealing not only to the specialists on zeta functions which will find their object of favorite interest connected in new ways with index theory, geometric quantization methods, foliation theory and representation theory. There are many unsolved problems and the book hopefully promotes further progress along the lines indicated here.

Contents

  • Préface
  • Chapter 1 Introduction
  • Chapter 2 Preliminaries
  • Chapter 3 Zeta Functions of the Geodesic Flow of Compact Locally Symmetric Manifolds
  • Chapter 4 Operators and Complexes
  • Chapter 5 The Verma Complexes on SY and SX
  • Chapter 6 Harmonic Currents and Caninical Complexes
  • Chapter 7 Divisors and Harmonic Currents
  • Chapter 8 Further Developments and Open Problems
  • Chapter 9 A Summary of Important Formulas

Caractéristiques techniques

  PAPIER
Éditeur(s) Birkhäuser
Auteur(s) Andreas Juhl
Parution 04/12/2001
Nb. de pages 406
Format 15,5 x 13,8
Couverture Relié
Poids 1279g
Intérieur Noir et Blanc
EAN13 9783764364052

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription