Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Cohomology of Drinfeld Modular Varieties: Series Number 41: Part 1: Geometry, Counting of Points and
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Cohomology of Drinfeld Modular Varieties: Series Number 41: Part 1: Geometry, Counting of Points and

Cohomology of Drinfeld Modular Varieties: Series Number 41: Part 1: Geometry, Counting of Points and

Gerard Laumon

360 pages, parution le 08/12/2010

Résumé

Originally published in 1995, Cohomology of Drinfeld Modular Varieties provided an introduction, in two volumes, to both the subject of the title and the Langlands correspondence for function fields. It is based on courses given by the author and will be welcomed by workers in number theory and representation theory.Originally published in 1995, Cohomology of Drinfeld Modular Varieties aimed to provide an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. The present volume is devoted to the geometry of these varieties, and to the local harmonic analysis needed to compute their cohomology. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated.1. Construction of Drinfeld modular varieties; 2. Drinfeld A-modules; 3. The Lefschetz numbers of Hecke operators; 4. The fundamental lemma; 5. Very cuspidal Euler-Poincare functions; 6. The Lefschetz numbers as sums of global elliptic orbital integrals; 7. Unramified principal series representations; 8. Euler-Poincare functions as pseudocoefficients of the Steinberg relation; Appendices.

Caractéristiques techniques

  PAPIER
Éditeur(s) Cambridge University Press
Auteur(s) Gerard Laumon
Parution 08/12/2010
Nb. de pages 360
EAN13 9780521172745

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription