Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations

Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations

Simon Markfelder - Collection Yellow Sale 2023

242 pages, parution le 20/10/2021

Résumé

This book applies the convex integration method to multi-dimensional compressible Euler equations in the barotropic case as well as the full system with temperature.This book applies the convex integration method to multi-dimensional compressible Euler equations in the barotropic case as well as the full system with temperature. The convex integration technique, originally developed in the context of differential inclusions, was applied in the groundbreaking work of De Lellis and Szekelyhidi to the incompressible Euler equations, leading to infinitely many solutions. This theory was later refined to prove non-uniqueness of solutions of the compressible Euler system, too. These non-uniqueness results all use an ansatz which reduces the equations to a kind of incompressible system to which a slight modification of the incompressible theory can be applied. This book presents, for the first time, a generalization of the De Lellis-Szekelyhidi approach to the setting of compressible Euler equations.
The structure of this book is as follows: after providing an accessible introduction to the subject, including the essentials of hyperbolic conservation laws, the idea of convex integration in the compressible framework is developed. The main result proves that under a certain assumption there exist infinitely many solutions to an abstract initial boundary value problem for the Euler system. Next some applications of this theorem are discussed, in particular concerning the Riemann problem. Finally there is a survey of some related results.
This self-contained book is suitable for both beginners in the field of hyperbolic conservation laws as well as for advanced readers who already know about convex integration in the incompressible framework.
- Part I The Problem Studied in This Book. - 1. Introduction. - 2. Hyperbolic Conservation Laws. - 3. The Euler Equations as a Hyperbolic System of Conservation Laws. - Part II Convex Integration. - 4. Preparation for Applying Convex Integration to Compressible Euler. - 5. Implementation of Convex Integration. - Part III Application to Particular Initial (Boundary) Value Problems. - 6. Infinitely Many Solutions of the Initial Boundary Value Problem for Barotropic Euler. - 7. Riemann Initial Data in Two Space Dimensions for Isentropic Euler. - 8. Riemann Initial Data in Two Space Dimensions for Full Euler. Simon Markfelder is currently a postdoctoral researcher at the University of Cambridge, United Kingdom. He completed his PhD at the University of Wuerzburg, Germany, in 2020 under the supervision of Christian Klingenberg. Simon Markfelder has published several papers in which he applies the convex integration technique to the compressible Euler equations.

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Simon Markfelder
Collection Yellow Sale 2023
Parution 20/10/2021
Nb. de pages 242
EAN13 9783030837846

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription