
Deep Learning in Multi-step Prediction of Chaotic Dynamics: From Deterministic Models to Real-World
Matteo / Dercole Sangiorgio - Collection Yellow Sale 2023
Résumé
The book represents the first attempt to systematically deal with the use of deep neural networks to forecast chaotic time series.
The book represents the first attempt to systematically deal with the use of deep neural networks to forecast chaotic time series. Differently from most of the current literature, it implements a multi-step approach, i.e., the forecast of an entire interval of future values. This is relevant for many applications, such as model predictive control, that requires predicting the values for the whole receding horizon. Going progressively from deterministic models with different degrees of complexity and chaoticity to noisy systems and then to real-world cases, the book compares the performances of various neural network architectures (feed-forward and recurrent). It also introduces an innovative and powerful approach for training recurrent structures specific for sequence-to-sequence tasks. The book also presents one of the first attempts in the context of environmental time series forecasting of applying transfer-learning techniques such as domain adaptation.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Matteo / Dercole Sangiorgio |
Collection | Yellow Sale 2023 |
Parution | 14/02/2022 |
Nb. de pages | 104 |
EAN13 | 9783030944810 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse