Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Dynamics of Regenerative Heat Transfer
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Dynamics of Regenerative Heat Transfer

Dynamics of Regenerative Heat Transfer

A.John Willmott

298 pages, parution le 19/02/2002

Résumé

The author, a respected authority on heat recovery, provides up-to-date and comprehensive coverage of the modelling of the process of heat transfer embodied in regenerative devices. He brings together material on storage and thermal generators and gives great emphasis to non-linear problems including the representation of temperature dependence of thermophysical properties involved.; In ten dynamic chapters, you will find coverage of: the storage of heat in packing; the Single Blow problem; basic concepts in counterflow thermal regenerators; counterflow regenerators; finite conductivity models; non-linear models of counterflow regenerators; transient response of counterflow regenerators; and parallel flow regenerators. Bringing together material developed over the past twenty years, the book will be of great interest to mechanical and chemical engineers as well as applied mathematicians concerned with models of heat transfer processes.

Contents

Preface xi
Nomenclature xv

1 Dynamics of Regenerative Heat Transfer: An Introduction 1

1.1 Introduction 1
1.2 Underlying Problems 2
1.3 Concluding Remarks 6
References 6

2 The Storage of Heat in a Packing: The Single-Blow Problem 7

2.1 Introduction 7
2.2 The Single-Blow Problem 8
2.3 Approximations 25
2.4 Finite-Difference Approximations 27
2.5 Use of a Modified Heat Transfer Coefficient in The Simplified Model 29
References 31

3 The Single-Blow Problem: Effect of Solid Finite Conductivity 33

3.1 Introduction 33
3.2 The Finite Conductivity Model 35
3.3 Simplification of the Finite Conductivity Model 36
3.4 Measure of Longitudinal Conduction 37
3.5 Simplified Approach to Axial Conduction 39
3.6 Analysis of the Effect of Longitudinal Conduction 41
3.7 Axial Conductivity in Packed Beds 42
3.8 A Comparison Between the Models Representing Latitudinal Conduction 42
3.9 Comparison of the Three Models 44
3.10 Other Geometries: The Hollow Cylinder 61
3.11 Concluding Remarks 69
References 70

4 Basic Concepts in Counterflow Thermal Regenerators 72

4.1 Introduction 72
4.2 Fixed-Bed Regenerators 74
4.3 Rotary Regenerators 79
4.4 Reversals 83
4.5 Mathematical Model 84
4.6 Modeling Rotary Regenerators 88
4.7 Discussion of the Design Parameters 91
4.8 Effect of Cycle Time upon Regenerator Performance 93
4.9 Particular Packings for Different Regenerator Configurations 95
4.10 Imbalance in Regenerator Performance 102
4.11 Concluding Remarks 110
References 113

5 Introduction to Methods for Solving the Equations that Model Counterflow Regenerators 114

5.1 Introduction 114
5.2 Open Methods 116
5.3 Closed Methods 118
5.4 Concluding Remarks 124
References 124

6 Counterflow Regenerators: Finite Conductivity Models 125

6.1 Introduction 125
6.2 Lumped Heat Transfer Coefficients 126
6.3 Further Development of [alpha] 130
6.4 Numerical Development of the [Phi]-Factor 131
6.5 Hausen's Development of the [Phi]-Factor 135
6.6 Formulae for [Phi] for Cylinders and Spheres 139
6.7 Formula for [Phi] for Hollow Cylinders 143
6.8 The Precise Representation of the Latitudinal Conduction in Regenerator Packing 148
6.9 Relationship Between the 3-D and 2-D Models 150
6.10 Limitations of the Adequacy of the 2-D Model 156
6.11 Improvement of the 2-D Model by the Introduction of a Time-Varying [Phi]([omega]) 159
6.12 The Effect of Longitudinal Thermal Conduction upon Thermal Regenerator Performance 162
6.13 Concluding Remarks 167
References 167

7 Integral Equation Methods for Modeling Counterflow Regenerators 169

7.1 Introduction 169
7.2 Initial Considerations 170
7.3 Difficulties with the Quadrature Methods 174
7.4 Difficulties with the Early Series Expansion Methods 176
7.5 Legendre Series Expansion Methods 178
7.6 The Choice of Data Points 181
7.7 Summary of the Collocation Method Using Legendre Polynomials and the Chebyshev Data Points 184
7.8 A Computational Consideration 184
7.9 Fast Galerkin Methods 185
7.10 The Nonsymmetric Case 187
7.11 The Calculation of the Double Integral 190
7.12 The Thermal Ratio for Nonsymmetric Regenerators 192
7.13 The Volterra Method for Solving the Integral Equations 193
7.14 Concluding Remarks 196
References 197

8 Nonlinear Models of Counterflow Regenerators 199

8.1 Introduction 199
8.2 Models and Methods 201
8.3 Overall Structure of Typical Software 202
8.4 The Underlying Differential Equations 205
8.5 Integration of the Underlying Differential Equations 206
8.6 Overall View of These Methods 210
8.7 Time-Varying [Phi]-Factors Within the Lumped Heat Transfer Coefficients 211
8.8 Variable Gas Flow Operation with Hot-Blast Stoves 212
8.9 Comparison of Several Models for Different Regenerators 216
8.10 Hill Method of Analysis for the Spatially Nonlinear Model 224
8.11 Solution for Constant Inlet Gas Temperatures 230
8.12 Obtaining the Solid and Fluid Temperatures at Periodic Steady State 231
8.13 Assessment of this Closed Method for Nonlinear Problems 232
8.14 Radiative Heat Transfer Between Gas and Solid Surface in Regenerators 233
8.15 Convective Heat Transfer Between Gas and Solid Surface 236
8.16 Dimensionless Parameters for Convective Heat Transfer 238
8.17 Data for Certain Temperature-Dependent Thermophysical Properties 239
References 242

9 Transient Response of Counterflow Regenerators 244

9.1 Introduction 244
9.2 Response to a Step Change in Operating Conditions 247
9.3 Step Changes in Inlet Gas Temperature 249
9.4 The Effect of a Step Change in Inlet Gas Temperature 252
9.5 Limitation of the Matrix Method 258
9.6 Unifying the Theory of Open and Closed Methods for Solving the Equations that Model Counterflow Regenerators 260
9.7 Overall Performance from the Matrix Method 261
9.8 The Effect of a Step Pulse Change in Inlet Gas Temperature 262
9.9 Unsymmetric Balanced Regenerators 263
9.10 Unbalanced Regenerators 265
9.11 Interpretation of the Relation Between the Transient Performance of a Regenerator and its Dimensionless Parameters 267
9.12 Step Changes in Gas Flow Rate 269
9.13 Further Considerations of the Transient Response of a Regenerator 273
9.14 The Thermal Inertia Exhibited by Variable Gas Flow Regenerators 278
9.15 Concluding Remarks 280
References 281

10 Parallel-Flow Regenerators 283

10.1 Introduction 283
10.2 Method of Analysis 284
10.3 An Open Method for Parallel-Flow Regenerative Heat Exchangers 285
10.4 Closed Methods for Parallel-Flow Regenerators 287
10.5 Symmetric Regenerators: Reversal Conditions 288
10.6 Other Closed Methods for Parallel-Flow Regenerators 289
10.7 Parallel-Flow Regenerator Performance 290
10.8 Concluding Remarks 292
References 294

Index

Caractéristiques techniques

  PAPIER
Éditeur(s) Taylor and Francis Books
Auteur(s) A.John Willmott
Parution 19/02/2002
Nb. de pages 298
Format 15,6 x 23,5
Couverture Broché
Poids 685g
Intérieur Noir et Blanc
EAN13 9781560323693
ISBN13 978-1-56032-369-3

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription