
Résumé
Contents
- 1 Some Preliminary Considerations
-
- 1.1 Mathematical Induction
- 1.2 The Binomial Theorem
- 1.3 Early Number Theory
- 2 Divisibility Theory in the Integers
-
- 2.1 The Division Algorithm
- 2.2 The Greatest Common Divisor
- 2.3 The Euclidean Algorithm
- 2.4 The Diophantine Equation ax+by=c
- 3 Primes and Their Distribution
-
- 3.1 The Fundamental Theorem of Arithmetic
- 3.2 The Sieve of Eratosthenes
- 3.3 The Goldbach Conjecture
- 4 The Theory of Congruences
-
- 4.1 Carl Friedrich Gauss
- 4.2 Basic Properties of Congruence
- 4.3 Special Divisibility Tests
- 4.4 Linear Congruences
- 5 Fermat's Theorem
-
- 5.1 Pierre de Fermat
- 5.2 Fermat's Factorization Method
- 5.3 The Little Theorem
- 5.4 Wilson's Theorem
- 6 Number-Theoretic Functions
-
- 6.1 The Functions Ċ and ċ
- 6.2 The Mobius Inversion Formula
- 6.3 The Greatest Integer Function
- 6.4 An Application to the Calendar
- 7 Euler's Generalization of Fermat's Theorem
-
- 7.1 Leonhard Euler
- 7.2 Euler's Phi-Function
- 7.3 Euler's Theorem
- 7.4 Some Properties of the Phi-Function
- 7.5 An Application to Cryptography
- 8 Primitive Roots and Indices
-
- 8.1 The Order of an Integer Modulo n
- 8.2 Primitive Roots for Primes
- 8.3 Composite Numbers Having Prime Roots
- 8.4 The Theory of Indices
- 9 The Quadratic Reciprocity Law
-
- 9.1 Euler's Criterion
- 9.2 The Legendre Symbol and Its Properties
- 9.3 Quadratic Reciprocity
- 9.4 Quadratic Congruences with Composite Moduli
- 10 Perfect Numbers
-
- 10.1 The Search for Perfect Numbers
- 10.2 Mersenne Primes
- 10.3 Fermat Numbers
- 11 The Fermat Conjecture
-
- 11.1 Pythagorean Triples
- 11.2 The Famous ¡§Last Theorem¡š
- 12 Representation of Integers as Sums of Squares
-
- 12.1 Joseph Louis Lagrange
- 12.2 Sums of Two Squares
- 12.3 Sums of More than Two Squares
- 13 Fibonacci Numbers
-
- 13.1 The Fibonacci Sequence
- 13.2 Certain Identities Involving Fibonacci Numbers
- 14 Continued Fractions
-
- 14.1 Srinivasa Ramanujan
- 14.2 Finite Continued Fractions
- 14.3 Infinite Continued Fractions
- 14.4 Pell's Equation
- 15 Some Twentieth-Century Developments
-
- 15.1 Hardy, Dickson, and Erdos
- 15.2 Primality Testing and Factorization
- 15.3 An Application to Factoring: Remote Coin-Flipping
- 15.4 The Prime Number Theorem
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Mc Graw Hill |
Auteur(s) | David M. Burton |
Parution | 01/09/2001 |
Édition | 5eme édition |
Nb. de pages | 412 |
Format | 16,5 x 24,2 |
Couverture | Relié |
Poids | 682g |
Intérieur | Noir et Blanc |
EAN13 | 9780072325690 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse