Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Elementary Number Theory
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Elementary Number Theory

Elementary Number Theory

David M. Burton

412 pages, parution le 01/09/2001 (5eme édition)

Résumé

This text provides a simple account of classical number theory, as well as some of the historical background in which the subject evolved. It is intended for use in a one-semester, undergraduate number theory course taken primarily by mathematics majors and students preparing to be secondary school teachers. Although the text was written with this audience in mind, very few formal prerequisites are required. Much of the text can be read by students with a sound background in high school mathematics.

Contents

1 Some Preliminary Considerations
1.1 Mathematical Induction
1.2 The Binomial Theorem
1.3 Early Number Theory
2 Divisibility Theory in the Integers
2.1 The Division Algorithm
2.2 The Greatest Common Divisor
2.3 The Euclidean Algorithm
2.4 The Diophantine Equation ax+by=c
3 Primes and Their Distribution
3.1 The Fundamental Theorem of Arithmetic
3.2 The Sieve of Eratosthenes
3.3 The Goldbach Conjecture
4 The Theory of Congruences
4.1 Carl Friedrich Gauss
4.2 Basic Properties of Congruence
4.3 Special Divisibility Tests
4.4 Linear Congruences
5 Fermat's Theorem
5.1 Pierre de Fermat
5.2 Fermat's Factorization Method
5.3 The Little Theorem
5.4 Wilson's Theorem
6 Number-Theoretic Functions
6.1 The Functions Ċ and ċ
6.2 The Mobius Inversion Formula
6.3 The Greatest Integer Function
6.4 An Application to the Calendar
7 Euler's Generalization of Fermat's Theorem
7.1 Leonhard Euler
7.2 Euler's Phi-Function
7.3 Euler's Theorem
7.4 Some Properties of the Phi-Function
7.5 An Application to Cryptography
8 Primitive Roots and Indices
8.1 The Order of an Integer Modulo n
8.2 Primitive Roots for Primes
8.3 Composite Numbers Having Prime Roots
8.4 The Theory of Indices
9 The Quadratic Reciprocity Law
9.1 Euler's Criterion
9.2 The Legendre Symbol and Its Properties
9.3 Quadratic Reciprocity
9.4 Quadratic Congruences with Composite Moduli
10 Perfect Numbers
10.1 The Search for Perfect Numbers
10.2 Mersenne Primes
10.3 Fermat Numbers
11 The Fermat Conjecture
11.1 Pythagorean Triples
11.2 The Famous ¡§Last Theorem¡š
12 Representation of Integers as Sums of Squares
12.1 Joseph Louis Lagrange
12.2 Sums of Two Squares
12.3 Sums of More than Two Squares
13 Fibonacci Numbers
13.1 The Fibonacci Sequence
13.2 Certain Identities Involving Fibonacci Numbers
14 Continued Fractions
14.1 Srinivasa Ramanujan
14.2 Finite Continued Fractions
14.3 Infinite Continued Fractions
14.4 Pell's Equation
15 Some Twentieth-Century Developments
15.1 Hardy, Dickson, and Erdos
15.2 Primality Testing and Factorization
15.3 An Application to Factoring: Remote Coin-Flipping
15.4 The Prime Number Theorem

Caractéristiques techniques

  PAPIER
Éditeur(s) Mc Graw Hill
Auteur(s) David M. Burton
Parution 01/09/2001
Édition  5eme édition
Nb. de pages 412
Format 16,5 x 24,2
Couverture Relié
Poids 682g
Intérieur Noir et Blanc
EAN13 9780072325690

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription