Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
EULERIAN NUMBERS
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

EULERIAN NUMBERS

EULERIAN NUMBERS

Petersen

Résumé

Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group.

The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers.

This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group.

The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions.

The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, which survey more advanced topics, including some open problems in combinatorial topology.

This textbook will serve a resource for experts in the field as well as for graduate students and others hoping to learn about these topics for the first time.

Eulerian Numbers.- Narayana Numbers.- Partially Ordered Sets.- Gamma-nonnegativity.- Weak Order, Hyperplane Arrangements, and the Tamari Lattice.- Refined Enumeration.- Simplicial Complexes.- Barycentric Subdivision.- Coxeter Groups.- W- Narayana Numbers.- Cubes, Carries, and an Amazing Matrix.- Characterizing f -vectors.- Combinatorics for Coxeter groups of Types B n and D n.- Affine Descents and the Steinberg Torus.- Hints and Solutions.

T. Kyle Petersen is an Associate Professor of Mathematics at DePaul University, Chicago, USA. His research areas include algebraic, enumerative, and topological combinatorics. He received his PhD in Mathematics from Brandeis University.

Caractéristiques techniques

  PAPIER
Éditeur(s) Birkhäuser
Auteur(s) Petersen
EAN13 9781493930906

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription