Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Generalized Linear Models and Extensions: Fourth Edition
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Generalized Linear Models and Extensions: Fourth Edition

Generalized Linear Models and Extensions: Fourth Edition

James W. / Hilbe Hardin

598 pages, parution le 27/06/2018

Résumé

Generalized linear models (GLMs) extend linear regression to models with a non-Gaussian, or even discrete, response. GLM theory is predicated on the exponential family of distributions-a class so rich that it includes the commonly used logit, probit, and Poisson models. Although one can fit these models in Stata by using specialized commands (for example, logit for logit models), fitting them as GLMs with Stata's glm command offers some advantages. For example, model diagnostics may be calculated and interpreted similarly regardless of the assumed distribution.

This text thoroughly covers GLMs, both theoretically and computationally, with an emphasis on Stata. The theory consists of showing how the various GLMs are special cases of the exponential family, showing general properties of this family of distributions, and showing the derivation of maximum likelihood (ML) estimators and standard errors. Hardin and Hilbe show how iteratively reweighted least squares, another method of parameter estimation, are a consequence of ML estimation using Fisher scoring.

Foundations of Generalized Linear Models.

GLMs.

GLM estimation algorithms.

Analysis of fit.

Continuous Response Models.

The Gaussian family.

The gamma family.

The inverse Gaussian family.

The power family and link.

Binomial Response Models.

The binomial-logit family.

The general binomial family.

The problem of overdispersion.

Count Response Models.

The Poisson family.

The negative binomial family.

Other count-data models.

Multinomial Response Models.

Unordered-response family.

The ordered-response family.

Extensions to the GLM.

Extending the likelihood.

Clustered data.

Bivariate and multivariate models.

Bayesian GLMs.

Stata Software.

Programs for Stata.

Data synthesis.

James W. Hardin is a professor and the Biostatistics division head in the Department of Epidemiology and Biostatistics at the University of South Carolina. He is also the associate dean for Faculty Affairs and Curriculum of the Arnold School of Public Health at the University of South Carolina. Joseph M. Hilbe was a professor emeritus at the University of Hawaii and an adjunct professor of sociology and statistics at Arizona State University.

Caractéristiques techniques

  PAPIER
Éditeur(s) Taylor&francis
Auteur(s) James W. / Hilbe Hardin
Parution 27/06/2018
Nb. de pages 598
EAN13 9781597182256

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription