Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Geometric Invariant Theory: Over the Real and Complex Numbers
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Geometric Invariant Theory: Over the Real and Complex Numbers

Geometric Invariant Theory: Over the Real and Complex Numbers

Nolan R. Wallach - Collection Yellow Sale 2023

190 pages, parution le 18/09/2017

Résumé

Geometric Invariant Theory (GIT) is developed in this text within the context of algebraic geometry over the real and complex numbers. It contains two chapters developing material in complex and real algebraic geometry and algebraic groups that are difficult to find in the literature.

Geometric Invariant Theory (GIT) is developed in this text within the context of algebraic geometry over the real and complex numbers. This sophisticated topic is elegantly presented with enough background theory included to make the text accessible to advanced graduate students in mathematics and physics with diverse backgrounds in algebraic and differential geometry. Throughout the book, examples are emphasized. Exercises add to the reader's understanding of the material; most are enhanced with hints.

The exposition is divided into two parts. The first part, 'Background Theory', is organized as a reference for the rest of the book. It contains two chapters developing material in complex and real algebraic geometry and algebraic groups that are difficult to find in the literature. Chapter 1 emphasizes the relationship between the Zariski topology and the canonical Hausdorff topology of an algebraic variety over the complex numbers. Chapter 2 develops the interaction between Lie groups and algebraic groups. Part 2, 'Geometric Invariant Theory' consists of three chapters (3-5). Chapter 3 centers on the Hilbert-Mumford theorem and contains a complete development of the Kempf-Ness theorem and Vindberg's theory. Chapter 4 studies the orbit structure of a reductive algebraic group on a projective variety emphasizing Kostant's theory. The final chapter studies the extension of classical invariant theory to products of classical groups emphasizing recent applications of the theory to physics.

Preface.- Part I. Background Theory.- 1. Algebraic Geometry.- 2. Lie Groups and Algebraic Groups.- Part II. Geometric Invariant Theory.- 3. The Affine Theory.- 4. Weight Theory in Geometric Invariant Theory.- 5. Classical and Geometric Invariant Theory for Products of Classical Groups.- References.- Index. Nolan R. Wallach is professor of mathematics at the University of California, San Diego. Awards include the Alfred Sloan Fellowship 1972-1974, the Linback Award for Research Excellence, 1977, Honorary Professor, University of Cordoba, Argentina, 1989, and Elected Fellow of the American Academy of Arts and Sciences, 2004. Professor Wallach has over 135 publications including (with Roe Goodman) Symmetry, Representations, and Invariants (Graduate Texts in Mathematics, vol. 255).

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Nolan R. Wallach
Collection Yellow Sale 2023
Parution 18/09/2017
Nb. de pages 190
EAN13 9783319659053

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription