Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Geometric Multivector Analysis: From Grassmann to Dirac
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Geometric Multivector Analysis: From Grassmann to Dirac

Geometric Multivector Analysis: From Grassmann to Dirac

Andreas Rosen - Collection Yellow Sale 2023

465 pages, parution le 19/11/2020

Résumé

This book presents a step-by-step guide to the basic theory of multivectors and spinors, with a focus on conveying to the reader the geometric understanding of these abstract objects. Following in the footsteps of M. Riesz and L. Ahlfors, the book also explains how Clifford algebra offers the ideal tool for studying spacetime isometries and Moebius maps in arbitrary dimensions.

The book carefully develops the basic calculus of multivector fields and differential forms, and highlights novelties in the treatment of, e.g., pullbacks and Stokes's theorem as compared to standard literature. It touches on recent research areas in analysis and explains how the function spaces of multivector fields are split into complementary subspaces by the natural first-order differential operators, e.g., Hodge splittings and Hardy splittings. Much of the analysis is done on bounded domains in Euclidean space, with a focus on analysis at the boundary. The book also includes a derivation of new Dirac integral equations for solving Maxwell scattering problems, which hold promise for future numerical applications. The last section presents down-to-earth proofs of index theorems for Dirac operators on compact manifolds, one of the most celebrated achievements of 20 th -century mathematics.

The book is primarily intended for graduate and PhD students of mathematics. It is also recommended for more advanced undergraduate students, as well as researchers in mathematics interested in an introduction to geometric analysis.

Prelude: Linear algebra.- Exterior algebra.- Clifford algebra.- Mappings of inner product spaces.- Spinors in inner product spaces.- Interlude: Analysis.- Exterior calculus.- Hodge decompositions.- Hypercomplex analysis.- Dirac equations.- Multivector calculus on manifolds.- Two index theorems.

Andreas Rosen is a Professor at the Chalmers University of Technology and the University of Gothenburg, Sweden. His research mostly concerns Partial Differential Equations, and uses techniques from harmonic analysis and operator theory.

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Andreas Rosen
Collection Yellow Sale 2023
Parution 19/11/2020
Nb. de pages 465
EAN13 9783030314132

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription