
Group-theoretic methods in mechanics and applied mathematics
Résumé
- Presents the basics of group analysis of differential equations
- Performs group-theoretic analysis of the axioms of classical and relativistic mechanics
- Outlines group-theoretic foundations of kinematics of rotations, Poincaré's equations, Hamiltonian mechanics, theory of resonant systems and others
- Gives solutions of a number of new mechanical problems
- Describes group-theoretic methods for the construction of asymptotic expansions in applied mathematics
- May be used by lecturers at universities and colleges as a basis for courses on mechanics and applied mathematics
- Notion of Group
- Lie Group. Examples
- Group Generator. Lie Algebra
- One-Parameter Groups. Uniqueness Theorem
- Liouville Equation. Invariants. Eigenfunctions
- Linear Partial Differential Equations
- Change of Variables. Canonical Coordinates of a Group
- Hausdorff's Formula. Symmetry Groups
- Principle of Superposition of Solutions and Separation of Motions in Nonlinear Mechanics
- Prolongation of Groups. Differential and Integral Invariants
- Equations Admitting a Given Group
- Symmetries of Partial Differential Equations
- Axiomatization Problem of Mechanics
- Postulates of Classical Mechanics
- Projective Symmetries of Newton's First Law
- Newton's Second Law. Galilean Symmetries
- Postulates of Relativistic Mechanics
- Group of Symmetries of Maxwell's Equations
- Twice Prolonged Lorentz Group
- Differential and Integral Invariants of the Lorentz Group
- Relativistic Equations of Motion of a Particle
- Noninertial Reference Frames
- Perturbation Theory for Configuration Manifolds of Resonant Systems
- Poincare's Equation on Lie Algebras
- Kinematics of a Rigid Body
- Problems of Mechanics Admitting Similarity Groups
- Problems With Determinable Linear Groups of Symmetries
- Legendre Transformation
- Hamiltonian Systems. Poisson Bracket
- Nonautonomous Hamiltonian Systems
- Integrals of Hamiltonian Groups. Noether's Theorem
- Conservation Laws and Symmetries
- Integral Invariants
- Canonical Transformations
- Hamilton-Jacobi Equation
- Liouville's Theorem of Integrable Systems
- The Angle-Action Variables
- Introduction
- Normal Coordinates of Conservative Systems
- Single-Frequency Method of Averaging Based on Hausdorff's Formula
- Poincare Normal Form
- The Averaging Principle
- Asymptotic Integration of Hamiltonian Systems
- Method of Tangent Approximations
- Classical Examples of Oscillation Theory
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Taylor and Francis Books |
Auteur(s) | D.M. Klimov, V.Ph. Zhuravlev |
Parution | 14/10/2002 |
Nb. de pages | 240 |
Format | 17,7 x 25,2 |
Couverture | Relié |
Poids | 576g |
Intérieur | Noir et Blanc |
EAN13 | 9780415298636 |
ISBN13 | 978-0-415-29863-6 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse